
AD-A147 552 A SURVEY AND EVALUATION OF SOFTWARE QUALITY ASSURANCE 1/2
(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH
SCHOOL OF SYSTEMS AND LOGISTICS S P LAMB SEP 84

UNCL RSS IFIE DFIT/GSM2LSY/845-9 F/G 9/2 NL

mlmlmllmmhhml
ImIIIEIIIIIIIE

EIIIIIIIIIIIl
IIIIIIIIIIhhlI

L2.8 L2.5

1.6*

LS -

v4. .

'C-.7 77.7--7-7,77 7

Stevent P.-am

A-

SOFAREN QUALTYE ASSR FNCE

C= AIR UTHESIY

Tw. DTICTIJ'e
SPARTEN OF THEAIR FORCE11

dk1sAIR UNIVERSITY U

AFIT/GSM/LSY/84

A SURVEY AND EVALUATION OF

SOFTWARE QUALITY ASSURANCE

THESIS

Steven P. Lamb
Captain, USAF

AFIT/GSM/LSY/84S-19

Approved for public release; distribution unlimited

The contents of the document are technically accurate, and
no sensitive items, detrimental ideas, or deleterious informa-
tion are contained therein. Furthermore, the views expressed
in the document are those of the authors and do not necessarily
reflect the views of the School of Systems and Logistics, the
Air University, the United States Air Force, or the Department
of Defense.

Accession For *.

NTIS GTRA&I
IPTIC TAB

By-
Ditribtion/___

AvailabilitY CodeS
- Avail and/or

'Dist special

-, .; .*'.

p. .- . ,

AFIT/GSM/LSY/84S-19

... - .. *%.

A SURVEY AND EVALUATION OF -

SOFTWARE QUALITY ASSURANCE

THESIS

Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Systems Management

*. ;- .". . j .

Steven P. Lamb, B.S.

Captain, USAF

September 1984

Approved for public release; distribution unlimited

'- .

____ .~. : -.-.-.a: ::::p :::::::

AcknowledQements

I would like to take this opportunity to express my

appreciation to all the many people who helped make this

thesis possible. I am particularly grateful for the guidance

and advice of Major Ronald H. Rasch, who helped me focus the

thesis research. Also, my sincerest thanks to Mr. Michael D.

Bates for his guidance, assistance, and encouragement through-

out this thesis effort. Their willing attitudes, timely sug-

gestions, and genuine interests and concerns made this thesis

a special learning experience.

Thanks goes to the professionals who agreed to be inter-

viewed. Without their cooperation, this thesis would have

been impossible. Unfortunately, their names cannot be listed

as they are too numerous and the subject matter is of such a

nature that it was agreed that no names would be used.

Special thanks are extended to Lieutenant Colonel Brian

S. Maass, Major Charles E. Beck, and Dr. Charles R. Fenno for

their support and interest in this project. Also, special

recognition goes to my fellow students for their moral support.

Finally, and most importantly, I wish to thank my mother

and father. As always, because of their love and support, I

was able to overcome many difficulties during this period in

my life.

Stve '.

Steven P. Lamb -i "_4_

•ii,

Table of Contents

Page

Acknowledgements i'* -

List of Figures v

List of Tables vi

I. Introduction1

Terms Defined 1
Problem Statement 4
Background 4
Research Question 9
Research Objectives 9
Scope of Research 9

Ii. Software Quality Assurance 11

Why the Need for Quality Assurance? ... 11
Objectives of Quality Assurance . . 12
How Muich Quality Assurance Is Enough? 12
Hardware vs. Software .* 13
Life Cycle Models 14
Quality Factors and Criteria 21
Quality Assurance Standards..........24
Software Quality Assurance Program 31
Chapter Summary 60

III. Research Methodology. 61

Data Collection. 61
Data Analysis 64
Chapter Summary 70

IV. Research Observations 72

Organization. 72
Planning. 75
Quality Measurement. :.............76
User Involvement. 77
Testing 78
Documentation..................79
Techniques and Tools..............80
Training. 80

% %.

Page

Benefits Gained 82
Chapter Summary 82

V. Recommendations and Conclusions 84

Research Summary 84
Recommendations* . 88
Problems Encountered 90
Further Reseah 90
Conclusion 91

Appendix A: Directives/Nil-Standards/Regulations . 93

Appendix B: Glossary of Techniques and Tools . . . 97

Appendix C: Sample Letter and Interview Guide . . 105

Bibliography 109

iv

List of Figures

Figure Page

1. Hardware/Software Cost Trends 5

2. Cost of Fixing Errors 8

3. Software Life Cycle 15

4. Idealized Software-Hardware System
Life Cycle 18

5. Software Verification and Validation 19

6. Relationship of Criteria to Software
Quality Factors 23

7. Relationships Between Software Quality
Factors 27

8. MIL-S-52779A Software Quality Assurance
Plan 33 - -

9. IEEE Standard 730 Quality Assurance Plan . . . 34

10. Staff Organizational Structure 37

ii. Project Organizational Structure -38

12. Functional Organizational Structure39

13. Matrix Organizational Structure 40

14. The UDF in the Development Process 51

15. NAVMAT Organizational Structure.... 74....-.

16. DARCOM Organizational Structure 74

V7

v °

List of rabies

Table Page

1. Definition of Software Quality Factors 22

2. Criteria Definitions for Software
.,Quality Factors 25

3. Advantages and Disadvantages of Bottom Up
and Top Down 44

14. Quality Assurance Techniques and Tools 54
5. Relationship of Techniques to Quality

Assurance Functions..... 55

6. Technique Effectiveness in Assessing

7. Relationship of Tools to Quality Assurance
Functions 57

8. Tool Effectiveness in Assessing Quality 58

I9. Factors Impacting Technique and Tool
Selection. 59

.ListoTab7e

Table Pge ...

.°I-

I.Dfnto fSfwr.uaiyFcos. . 21::

vi...

. o

AFIT/GSM/LSY/84S-19

".- % "

Abstract

It is crucial to the success of mission critical computer .

resources (MCCR) that software be delivered for operational

use with the minimum number of errors possible. For this rea-

son, the discipline of software quality assurance is needed.

This *easeeza.Afocuses on data collection by means of an exten-

sive literature review and personal interviews with civilian

and Air Force software development organizations. Then anal-

ysis was performed to determine what approaches would improve

the quality of software before delivery to the Air Force for

* operational use.

To provide the highest level of software quality, the

entire development process must include quality checks at each

step from design through acceptance test. An active software

quality assurance program that identifies and corrects errors

during the development process is necessary. This effort will

lead to significant defects being identified and resolved

early. If the quality of software is to improve, greater

emphasis must be placed on software quality assurance as a

separate discipline 9 Quality software cannot be attained by

following hardware oriented plans and procedures. Therefore,

..software conformance standards must be provided. Technology

is constantly changing and advancing, and provision must be - .

vii

made to update personnel in the state-of-the-art quality

assurance practices. Continual training is essential, both

for those personnel who have quality assurance background

and those who do not. The arguments for software quality

assurance are critical. In short, they are to combat error

and improve software quality to meet mission needs.

vi

4%.%

viii .''

4*..-4

; . - ' '. " -* -o . " . ° - - • v - . . ° . -. • •4 4

A SURVEY AND EVALUATION OF
SOFTWARE QUALITY ASSURANCE

I. Introduction S

Historically, computer technology has been widely

exploited in the Air Force, both in command and control sys-

tems and in management support systems. In addition, this

technology has become an essential subsystem of modern air-

craft, with regard not only to both offensive and defensive

weapon delivery, but also to navigation, to on-board moni-

toring of performance sensors, to automated ground support

equipment, and even to the actual flight control of the

vehicle (24.1). Therefore, computer hardware failure or

inadequate software can mean that an aircraft cannot fly or

carry out its mission, command and control systems cannot

communicate with each other, or important management infor-

mation is not received in a timely or accurate manner. Given

these problems, it becomes important to control the computer,

and insure the quality of computer hardware and software.

Terms Defined

Hardware refers to any and all physical machines forming

a computer (14:102). This would include card readers, print-

ers, tape units, disk drives, central processing units, con-

soles, terminals, and so on.

. -I.. ... *** - ** * .-. :.-

.o.* * * * * -- .

Software is defined as a combination of computer pro-

grams and computer data required to enable the computer hard-

ware to perform computational or control functions (5:98).

Software can be expressed in human readable form, such as a

source listing or other documentation. It may reside in

media only accessed by the computer, such as magnetic tapes

or disks. Also, it can reside within the computer memory

(5:99).

Quality is, at best, a relative and subjective measure-

ment. Webster's New Collegiate Dictionary defines quality

as a distinguishing attribute or characteristic (54:936).

Defining these attributes or characteristics becomes a prob-

lem because individuals interpret quality from their own

perspective.

For the purpose of this research effort, software qual-

ity is defined as the degree to which a software product

possesses a specified set of attributes necessary to fulfill

a stated purpose (5:99).

A current trend is that software quality and software

reliability are synonymous. Since quality is a set of many

attributes and reliability is one of these attributes, then

reliability becomes a subset of quality (40:129). By def-

inition, reliability is the ability of a software program to

perform a required function under stated conditions for a

stated period of time (34:32).

There are a host of definitions that apply to quality

assurance. The official Air Force position is that quality

2

2. .-,-..

assurance is a "planned and systematic pattern of all actions

necessary to provide adequate confidence that adequate tech-

nical requirements are established; products and services

conform to established technical requirements; and satisfac-

tory performance is achieved" (18:7). This definition goes

beyond earlier interpretations that stated quality assurance

should merely verify conformance to specifications. Another

definition proposed by the Institute of Electrical and Elec-

tronic Engineers states that quality assurance is a "planned

and systematic pattern of all actions necessary to provide

adequate confidence that the item or product conforms to

established technical requirements" (34:28). The bottom

line for software or hardware quality assurance is ensuring

the user's needs have been adequately satisfied.

Quality control is a management function whereby control

of quality of produced material is exercised for the purpose

of preventing production of defective material (20:5). This

differs from quality assurance because "a management function"

is only one of "all actions" necessary to provide quality.

Therefore, quality control is not as thorough as quality

assurance when discussing software; but it is an essential

part of quality assurance.

The software life cycle consists of a set of activities

occurring in a given order during the development and use of

software (34:37). The time periods during which these activ-

ities occur are called phases. The software life cycle typ-

ically includes a requirements phase, design phase, code

3

.... , - . , .. ' .. ,'. '. . , o. .. , ,-- ,.. . .- . .*. *• . . ** -~ * . .- ,.- -,. ,- ,. ,. • .. ,~ %. ,.-, ,2 .

phase, test phase, acceptance phase, and operational phase

(9:40). At the current time a consensus has not developed

as to which phases comprise a software life cycle. Therefore,

the above example is only one of many that exist in today's

literature.

Problem Statement

At present, it is not generally possible to develop com-

puter software that is 100 percent reliable or error-free

(25:263). Therefore, when placed into operation, any unde-

tected or uncorrected software errors may result in severe

operational problems and possible mission degradation. Soft-

ware quality assurance is a way to improve quality through

reduced defects (41:356). This investment in early error

detection reduces later error discovery rates, saves the

much larger rework cost, and improves the Air Force mission

capability.

Background

In the U.S., the annual cost of software in 1980 was

approximately $40 billion, or about two percent of the Gross

National Product (9:17). Compared to the cost of computer

hardware, the cost of software is continuing to increase, as

shown in Figure 1.

Within the federal government, Dr. 3acques S. Gansler,

former Deputy Assistant Secretary of Defense for Material

Acquisition, also supports the relevance of software costs.
..,'

4~::

,. --°

OEVELOPMENTIMAINTENANCE

PERCENT
OF

COST

4.o

S

* I .-
Sotwrei bigw,, buinsswthnheDpatmnto

29C I , -"iNANC-

I@@8 111NSi

Figure 1. Hardware/Software Cost Trends (13:74)

Software is big business within the Department of-"-,

Defense. The current annual expenditure on Defense
System software is now estimated in excess of three
billion dollars; yet even this substantial sum is
the tip of the iceberg (28:2). I--.

In addition, a report to Congress by the Comptroller

General, General Accounting Office (GAO), FGMSO-80-4,

November 9, 1979, cites a continuing problem of developing

software with the federal government. The report reflected

the views of 163 software contracting firms and 113 federal

government project officers. The following is a summarized

account:

1. Cost overruns are common in more than 50 percent of the

cases studied.

5

II

lk;"~ 01. - .

, .'.;

2. Schedule overruns occur in more than 60 percent of the

cases.

*3. Of the nine contracts examined and the $6.8 million

expended, the results were:

a. Software delivered but never used: $3.2 million.

b. Software paid for, but never delivered: $1.95

million.

c. Software extensively reworked before use: $1.3

million.

d. Software used after changes: $198,000.

e. Software used as delivered: $119,000.

The GAO report concluded that "the government got for its

money less than two percent of the total value of the

contracts" (27:77-78).

Software cost is only one facet of the picture. Another

facet is unsatisfactory software performance due to software

errors. The need for error-free software in major weapon

systems is obvious, as stated earlier. But the impact of

"when" defects are discovered in the software life cycle

needs further discussion. "

Defects in software are of two kinds. The first is a

design error, an inconsistency with design or specifications

which causes the software to do other than what is desired by

the user. The second defect is a logic error. This type of

error is in the computer program logic that cause the soft-

ware to operate inconsistently with respect to the written

requirements (27:22).
6..-.

Software error studies have reported design errors as

occurring most often, ranging from 61 percent to 64 percent.

Logic errors were reported to range from 36 percent to 39

percent (29:13). The important point to note is the large

percentage of design errors. S
Other studies show that software errors typically are

not detected until late in the software life cycle. A study

of large software development effort found that 54 percent

of all software errors were not discovered until the accept-

ance phase. The overwhelming proportion of these were design

errors (1:352). When software errors are found late, require-

ments have to be revalidated, designs redesigned, software

and systems retested, and documentation rewritten (13:76).

The cost of fixing an error rises dramatically as the

software progresses through the life cycle. Figure 2 shows

a summary of experience on projects at International Business

Machines (IBM), General Telecommunications Equipment (GTE),

the Safeguard software project, and several TRW projects.

The solid line in this figure represents the relative cost

of correcting software errors as a function of the life cycle

phase in which the corrections are made (9:39-40). Comparing

extreme ends of the software life cycle in Figure 2, one man

hour spent in finding and correcting a requirements specifi-

cation error during the requirements phase would be multi-

plied by 100 if the same error were discovered and corrected

during operations (38:488). Therefore, discovering errors

early in the software life cycle can yield large payoffs.

7

-i
________.__ .A .2..~ ~ ' K- . •" "

50 (TRW mimyl

j 0-0 SAFEGUARD

2 0

2 -

Rg~i~mu~u Omi cos uapt Agbtmie Oeto

Phall in *ad @0 ~tce andcoesd

Figure 2. Cost of Fixing Errors (9:40)

This rising software error cost is further supported by

a DoD study that reported costs for Air Force avionics soft-

ware averaged about $75 per instruction during the develop-

ment phases while the cost of software maintenance during

the operational phase ranged $4000 per instruction. Note

here that software maintenance, in addition to correction of

errors, includes the updating and revision of software caused

by changes to the mission requirements (22:311). In addition,

3. H. Frame of IBM, in a talk entitled "Major Trends in Soft-

ware Quality: 1978-1985," said that correcting errors is 38

times more expensive during the test phase than during the

initial design effort (27:28).

8

Software quality assurance not only strives to prevent

faults from getting into the software, it also wants to find

and correct them as early as possible in the development

cycle.

Research Question

What approaches and/or techniques will improve the qual-

ity of computer software before turnover to the Air Force?

Research Objectives

1. Identify various methodologies used to ensure software

quality.

2. Compare methods used by civilian and Air Force organ-

izations to ensure software quality.

3. Critique the effectiveness of the methods used.

Scope of Research

Individual studies may be found on Software Quality

Metrics, Software Control During Acquisition, Software Doc-

umentation, and Microcomputer Software; but there is a notice-

able lack of studies concerning Software Quality Assurance as

the main subject. This thesis will increase the available

knowledge on Software Quality Assurance.

Because computer software encompasses a broad subject

matter, only the software associated with mission critical

computer resources (MCCR) is discussed in this research

effort. In general, mission critical computer resources

are involved with:

9
,o". * °

* .&~* **~.**J'.-...... k-

V V '..~'-' • ____ ____ ._-.

1. Intelligence activities;

2. Cryptologic activities related to national security;

3. Command and control of military forces;

4. Equipment that is an integral part of a weapon or weapon

system; or

5. Is critical to direct fulfillment of military or intel-

ligence missions (31:9).

Hardware issues are not within the scope of this research.

Hardware, perhaps because it is easier to measure, is con-

stantly reported upon in trade Journals (27:1). Therefore,

any references beyond simple comparisons are not included.

Civilian and Air Force organizations used in this research

were chosen from Dayton, Ohio and Wright-Patterson Air Force

Base, Ohio. This was done because there is an extensive

industrial base dedicated to software development in this

geographical area.

The research effort was also limited to the time period

allowed by the Air Force Institute of Technology 15 month

graduate degree program.

10 I

II. Software Quality Assurance

The information contained in this chapter is the result

of an extensive literature review on software quality assur-

ance. It is presented to increase the reader's understand-

ing of software quality assurance and provide a common foun-

dation for further research and discussion.

To begin with, software quality assurance is a rela-

tively new concept that has received a great deal of empha-

sis over the past few years. Industry and the government

have begun to realize a need for greater discipline in the

software development process (30:18).

Why the Need for Quality Asaurance?

The arguments for quality assurance have been given

earlier. In short, they are to combat error, thus reduc-

ing life cycle cost, and improve software quality to meet

mission needs.

Another case for quality assurance is the social

motive. Computers and software are making an impact on

personal lives. Everyday, more and more personal records, -

bank accounts, community services, traffic control, air

travel, medical services, and national security are being

entrusted to computers and software (9:19). This increas-

ing impact on human welfare presents a challenge to soft-

ware quality assurance.

11 "":

-.-.. :-,.,.-..........,..........-... .;..... . ,-.................,-...- .-....... ,

Objectives of Quality Assurance

As stated in Webster's New Collegiate Dictionary, an

objective is defined as "something toward which effort is

directed" (54:785). Therefore, the effort of quality assur-

ance is directed towards the following objectives:

1. Incorporation of software quality assurance into the

overall software program planning.

r 2. Preparation and evaluation of standards that guide the

preparation of software documentation, design, and code.

3. Evaluation of the software design process and design

products for conformance to requirements.

4. Monitoring of the software design for compliance with

design and performance requirements, adequacy of methods

used, and positive evidence of compliance.

5. Review of software tests requirements, plans and pro-

cedures for compatibility and adequacy.

6. Monitoring of software tests for conformance with pro-

cedures, and verifying that test results are documented.

7. Implementation of a system for recording, reporting, and

tracking software problems and for assuring the adequacy

of corrective actions (49:49).

How Much Quality Assurance Is Enough?

There are certain criteria that can be used in deter-

mining increased or decreased software quality assurance

effort. One is to perform a risk analysis of the impact of

the software on the overall program. Whenever risk is great, .

12

an intensive quality assurance effort is merited (50:77).

For example, the quality assurance needed for the National

Aeronautics and Space Administration (NASA) space shuttle

program is more critical, or higher risk, than for a remote

radar tracking site.

Other risk factors which serve as criteria for increased

emphasis on quality assurance include:

1. Complexity of software applications.

2. Amount of software (potential for error increases with

size).

3. Stability of requirements.

4. Uniqueness of application. (Has this ever been done

before?)

5. Lack of experienced personnel.

6. Rushed development schedules.

7. Mission criticality of the software.

8. Unavailability of realistic test environment (50:77-78).

Hardware vs. Software

Hardware quality assurance has been used successfully

for many years. But even though the disciplines of hard-

ware quality assurance may apply to software, a new set of

conditions should be addressed by software quality assurance:

1. Software components do not degrade with time due to wear

or fatigue.

2. Unlike hardware, software failures are seldom preceded

by warnings.

13................

3. The use of standard components is much more prevalent in

hardware.

4. Hardware repairs restore the original condition; software

repairs establish a new configuration state.

5. Hardware can usually be tested exhaustively; not so with

software. There are many more distinct paths to check in

software than in hardware.

6. Management has had a much better intuitive understanding

of hardware than of software (25:11; 38:489-490).

Life Cycle Models

IL Referring to a life cycle of software is the most common

method of addressing software development. A review of the

literature has produced an abundance of illustrations of the

true or ideal life cycle. For the purpose of this study,

the following six phases will be considered a software life

cycle: Requirements Analysis, Preliminary Design, Detailed

Design, Coding and Checkout, Testing and Integration, and

Performance or Operation (6). Figure 3 shows the software

life cycle and the key outputs of the phases.

The first phase to discuss is Requirements Analysis.

During this phase both system and software requirements and

their relationship are evaluated. Through analysis a deter-

mination is made as to what the software is to do in terms

of inputs, processing, outputs, and accuracy. The following

is a representative set of criteria (13:88) which may be

applied during analysis:

14

6,~~~ zu '

a 4 1

0,.1 d
3 *.!

L. 40

4t

2.. 39

ca-

3b.3
t. ,4.-

'C'u

- Tii

U~

LILI

15-

1. Realistic: Requirements must be achievable within the

capabilities of the computer hardware.

2. Unambiguous: Requirements must be stated such that

they are definitive and not open to subjective inter-

pretations.

3. Consistent: Requirements must be consistent with one

another, with interfacing subsystems, and with those

at next higher and lower levels.

4. Necessary: Unnecessary or overly restrictive require-

ments will increase the cost and complexity of the

software and will also impact the design, code, and

testing schedules.

5. Complete: The requirements must completely specify the

software product to be orovided in terms of accuracy,

timing, throughput, interface control, and input/output.

The next phase is Preliminary Design. The object of

this phase is to translate the requirements into a software

design. The design will include mathematical models, the

allocation of the requirements to components of the software,

the relationship between these components, and the external

interfaces (6).

Following Preliminary Design is the third phase, Detailed

Design. The purpose of Detailed Design is to extend the level

of detail by identifying individual software units. These

units must be defined in sufficient detail for coding and unit

testing. Also, they include functional descriptions, logical

flows, algorithms, and constraints (6). •..

16

.~% 4*** **4~ . * 4. 44 4~* 4 . -.. . . .

*4.-- 4W 4-4

The fourth phase, Coding and Checkout, includes trans-

lating the detailed design into a computer programming lan-

guage. Usually it is a high-order language but it may also

be assembly language. Once compilation and assembly errors

are corrected, each individual software unit is executed to

remove obvious defects, dnd software tools are used to remove

the not so obvious defects. This procedure is considered the

Checkout (13:09-91).

Once coding is complete, the Testing and Integration

Phase begins. Here the developed software is tested to show

consistency with system and software requirements. The inte-

gration portion of this phase typically involves two forms

of integration. First, individual software units are syn-

thesized into subsystems and then systems. Second, the

entire software system is integrated with the computer hard-

ware (8:23).

The last phase of the cycle is the Performance Phase or

Operational Phase. This phase is conducted to determine if

the software indeed satisfies the specified requirements.

The key element of this phase is the environment. Any test-

ing and evaluation should be conducted in an environment as

operationally realistic as possible (6). Figure 4 shows the

relationship between a software life cycle and a hardware

life cycle within a major system development cycle.

Throughout the software life cycle there is on-going

assessment being performed commonly known as "verification

and validation."

o.1

i': "..'17

- - . - - -. . r r~~~~~~~~ r .4 6m- r r ~ ~ - - - - 4 ~

034

a 45 Ze9I~i wiia
4A4

c I

-
0

tAO*

a.aa

crC CU 0K

18z

F71.1

R EQUIREMENTS
D EFIN.ITIO N -

SYSTEM WHAT THE SYSTEM IS SUPPOSED TO 00

REQUIREMENTS

I JI SOFTWARE DEVELOPMENTri -- _. - 'i

Ii I I
I S W R WHAT THE SOFTWARE IS SUPPOSED TO O I

REQUIREMENTSW I

OFTWAR-E

PLANNING

I CODING ANDI
40 DEVELOPMENT

INTEGRAIONI

IS THE SOFTWARE DOING WHAT SOFTWARE

IT IS SUPPOSED TO 00' VALIDATION

TESTING"i " 'I

------------------------.- -

HARDWARE.IS THE SYSTEM DO1IG WHAT SYSTEM
IT IS SUPPOSED TO DO? VALIDATION

Figure 5. Software Verification and Validation (13:86)

Verification and validation is the systematic pro-
cess of analyzing, evaluating, and testing system
and software documentation and code to ensure the
highest possible quality, reliability, and satis-
faction of system needs and objectives (37:238).

In the past, this activity has proven to be a very effective

means for achieving high-quality software (45:659). As illus-

trated in Figure 5, verification is the evaluation process

19

,_--_.--:._ -:._":e.. ._" ?..--.-'.,-_........-_..._............"...........-.. _.... ,-..

designed to ensure consistency and completeness of the product

at any phase within the software life cycle. Consistency is

concerned with measuring the degree to which a phase is in

agreement with the previous phase. Completeness is a measure

of the readiness to continue into the next phase. Also

illustrated, validation is directed at test and evaluation

to measure how well the product performs against established

requirements (13:85).

Including software quality assurance within all phases

of the software life cycle is essential to the development of

quality software (32:32). During the Requirements Analysis

Phase, quality assurance should assist in the review of

requirements to determine acceptability. During the Design

Phase, quality assurance should work with software develop-

ment personnel to recommend and maintain standards, proce-

dures, and plans that affect the remainder of the life cycle.

During the Code and Checkout Phase, numerous monitoring

functions, such as software code review, are conducted to

verify compliance with standards. During Testing and Inte-

gration, quality assurance should review test plans and pro-

Ledures. During the Operational Phase, quality assurance

performs a final review to determine whether all plans and

procedures were in accordance with the requirements of the

user (49).

The following are benefits of including quality assur-

ance in a software life cycle:

20

1. Life cycle models with software quality assurance activ-

ities integrated can serve as planning guides so that

important areas are not omitted.

2. Fully developed life cycle models, with integrated qual-

ity assurance, provide a method of keeping track of

which activities are to be performed, and reports that

are to be written.

3. Software quality assurance personnel working with a life

cycle model will review and evaluate the approach, the

methods, the status, and the achievements during each

phase of the software development. This allows for

early detection and timely correction of problems. --

4. A life cycle model provides a significantly practical

tool for training software quality assurance personnel

(49:50-52).

Quality Factors and Criteria

The concept of software quality originates from a set of

attributes. Explicit attention to these attributes can lead

to significant savings in software cost (10:218). Therefore,

an understanding of the attributes of software quality can

lead to a better understanding of software cost. For the

purpose of conformity, the terms attributes, characteristics,

and factors have the same meaning when referring to software

quality (55; 10; 40).

Another reason for understanding software quality factors

is because they provide a means to define quality requirements.

21

* . *. *....-* *..

.,...-

TABLE 1

Definition of Software Quality Factors (40:129)

Co m Exten Ml which a Program saisfis its specifications and
fulflstheusersesin obectves.

RY Extent to which a program can be e --peced to peorm ts ...
meddfunction with required precision.

8Wbancy The amount Of com"puting resource and code equired by
a Program to perform a fhuction.
xe to which acces to software or data by unauthorized
Peron can be controled.
Effort required to lemr, operate prepare wopw. and interpret
output of a program.

A~irahub~ Effort required to locat and fix an error in an operational
prI

Tinthi"Y Effort required to test a program to inre it perform igs
ineddfunction.

Effort required to modfy en operational program.
OEffort required to transfer a program from one hardware

conirton andor sofware system environment to an.
other.

RWebirY Ee whih a Progo can be used in oew appica.
tions- reated to the packaging and scop of the functions
that programs perfom.

PIM"Werdak) Effort required to couple one system with another.

This is important because experience has shown that poor

definition of requirements is a source of software design,

test, and operational problems (55:233). Refer to Table 1

for software quality factor definitions.

The quality factors In Table 1 can be further broken

down into criteria. These criteria further define the

quality factor and help describe the relationship between

factors. The criteria are independent attributes of the

software by which the quality can be judged, defined, and

measured (40:130). The relationship of criteria to software

22

Execution efficmc Storage ef iciency

Usabiity I

Opeabiity Tren~g Cnimniaivee. input/output input/output
OprbiivCW 'trrm volurne rat*

C'onsisten Smnpicity Conicisones modulerlty Selt-dewerptvenms

Criteria ty

Figue 6. Relaionhip f Crteri to Software Quait

L@W ZFactors(01132

23

A .. . - -- ..

Gefllily Modulaiy cef aodmIu I .w a -a

Legeid P actor

Figure 6. Continued

quality factors are shown in Figure 6. The definitions of

these criteria are provided in Table 2.

* An important consideration in identifying software

quality factors is some of them are in conflict with others

(51:62). Figure 7 can be used as a guide in determining

these conflicts. The following are examples of conflicts:

1. The use of assembly language and exploitation of special

hardware features can enhance Efficiency at the expense

of Portability.

2. The use of detailed error messages enhance Testability

at the expense of Efficiency (51:62).

Quality Assurance Standards

In the past, the establishment of conformance standards

has been neglected for software development. Finally, this

24

TABLE 2

Criteria Definitions for Software Quality Factors
(40:133-134) 0

CAkeioI Definidn Relted
Fact"r

Treehbay Those attributes of the software that pro- Correctness :
vide a thread from the requirmene to the
implementation with repet to the specific
development &4 operational environment.

Com/etme Thome attributes of the software that pro- Correctness
vide ful implementation of the functions
reqired. P

Conaistency Those attributes of the software that pro- Correctness
vide uniform design and implemtation Reliability
technkue and notation. Maintainability

Accwy Those attributes of the software that pro- Reliability
vide the required prcision in calculations
end outputs.

Error Tobwicer Those attributes of the software that pro- Reliability
vide continuity of operation under non-
nominal conditions.

Skrp~dty Those attributes of the software that pro- Reliability
vide implementation of functions in the Maintainability
moat understandable manner. (Usually Teatabi ity
avoidance of practices which increase com-pwk.)"".

fodu*y Those attributes of the software that pro- Maintainability
vide a structure of highly independent Flexibility
modules. Testability

Portability
Reusability
Interoperability-

GeraWY Those attributes of the software that pro- Flexibility
vide breadth to the functions performed. Reusability

Expandabifty Those attributes of the software that pro- Flexibility
vide for expansion of data storage re- S
quirements or computational functions.

Instrumentation Those attributes of the software that pro- Testability
vide for the measurements of usage or
identification of errors.

Sf- Those attributes of the software that pro- Flexibility
Desciptfiveness vide explanation of the implementation Maintainability S

of a function. Testability
Portability
Reusability

25

_7
- J - -.. --. . . . ---.%

TABLE 2

Continued

Cntanbon DSOikkn Reated

Execudmo Those attributes of the softwere dha pro- Efficiency
Effiwwnc wide for minimnum processingltimne.
Storage Effmacv Thoms attributes of the sowre that pro- Efficiency

vide for nimuwm stoa rereent

Accs Contolf Thoee attributes of the softwer that pro- Integrity
vide for control of the acem of software
end dm.n

Arw Auct Those attributes of the softwar tha pro- Intgrity
vide foran audt of tosamsof softwar
and data.

Operabay Those atributes of the software tha deter Ulsbility
-nnooto androe-reconcerned

with the operation of the softwae.
T~ANOng Those attributes of the softwae that pro- Usabilt

vide transition frm current opea-tin ior
*initimilfamiliarization.

Cofm.... - mne Thoseewtibus of the softwe thapro- Usablity
vide useful inpju and outputs wic can
be assimilated.

Softwere, System Those attributes of the software that deter- Portability
Indepowsnc mine its dependency on the software en- Reusablity

viwonrnent (operatin systems . utilities,
input/output routines, et).

Maochine Those attributes of the software that deter- Portability
Independence mine its dependency on the hardware Reusability

system.
Communicatons Those attributes of the software that pro- Interoperability
Commionait vide the use of standard protocols and

interface routinermw--
Data Commonality Thosrattributes of the software that pro- Interoperability

kie the use of standard data representa-
tions.

Conciseness Those attributes of the software that pro- Maintainability
vide for implernentation of a function with
a minimum amount of code.

26

A A- -- -*-t- -.71 o7-.

.K.. =..

Redblft 0 000j*
--- 0 0 0 0 000,0

Inwopwby 00-

Logw* It a MO~ dapm of whi V ii g IV am uinMVA dw"e of qUilty a aPew for doe

0Jit "40 i:i

o Low:,

o o.Ww "'

ONdi* MS.dsuiiowaggfindn

Figure 7. Relationships Between Software Quality Factors
(53:147)

e o ts s o "e ,. -

provide adceuae standars nt (39:19).paatonan

-iiu accetabe rquirmens fr te prpartio-an

content of Software Quality Assurance Plans" (12:45). The

concern here is that the basic plan of developing the soft-

ware should be well defined. This standard does not dictate

27

what approach is to be used; however, it does identify com-

mon elements required for quality assurance.

Directives, Military Standards/Specifications, and

Regulations. The following list outlines current policy

that applies to software quality assurance. This is not an

exhaustive list, but instead is a list of "most commonly

used" policies:

DODD 5000.29 Management of Computer Resources in
Major Defense Systems

MIL-S-52779A Software Quality Assurance Program
Requirements

MIL-Q-9858A Quality Program RequirementsL

MIL-STD-480 Configuration Control-Engineering
Changes, Deviations and Waivers

MIL-STD-483 Configuration.Practices for Systems,
Equipment, Munitions, and Computer
Programs

MIL-STD-490 Specifications Practices

MIL-STD-1521A Technical Reviews and Audits for Sys-
tems, Equipment, and Computer Programs

AFR 800-14 Vol. I Management of Computer Resources in
Systems

AFR 800-14 Vol. II Acquisition and Support Procedures
for Computer Resources in Systems

The availability of information does not ensure that high
quality software will be developed. This information must

be used and faithfully followed. Appendix A gives a more

comprehensive list of government documents which may be

used in the quality assurance effort.

Test Oriented Quality Assurance. This type of quality

assurance is illustrated by provisions in MIL-STD-483 and

28

p ' . "..'.".. .,.'/ / .-.- '.- . .'..'.-" ' .''' -' -..'''L. -.. " .. 'L ."""" ."" "•"."

MIL-STD-490. Basically, these provisions equate quality

assurance to a test program. They specify test plans and

procedures, categories and types of tests, and methods of

formal verification of a design requirement as part of a

* test activity (19; 21).

The major pitfall of test oriented quality assurance is

you don't test quality into a software product, you design

and build it in. If a serious quality defect is discovered

during a formal test phase, it may be too late or too expen-

sive to properly correct it (51:2; 55:230).

Development Oriented Quality Assurance. Quality assur-

ance of this kind is best described as a narrow interpreta-

tion of MIL-S-52779A. In other words, it means to assure

that the software delivered under contract complies with the

requirements of the contract.

The pitfall of this approach is that if the contract

specifies poor quality software, the quality assurance pro-

gram will also assure that you get poor quality software.

You get what you ask for and pay for.

To offset this weakness, MIL-S-52779A must be supple-

mented by a great deal of early planning and quality speci-

fications (51:2-3; 55:230).

Life Cycle Oriented Quality Assurance. This style of

quality assurance is exemplified by an expanded interpreta-

tion of MIL-S-52779A as supported by the life cycle prin-

ciples from DODD 5000.29 and AFR 800-14. These documents

29

...

properly focus effort on the early requirements phases as the

appropriate place for planning and specifying attributes of I

software quality. Life cycle oriented quality assurance pro-

vides the opportunity to reduce costs by assuring quality

software during software development (51:3; 55:231).

Joint Service Policy. The Department of Defense started

a number of initiatives in the mid-1970s aimed at providing

better management of software. The services then developed

their own policies for acquiring and supporting computer

resources (36:191).

In January 1979, a subgroup of the Joint Logistics Com-

manders (JLC) planned and conducted a software workshop to

determine if there was a basis for coordination and adoption

of joint service policy and standards (36:192). The subgroup

concluded that the services should develop common policy,

development standards, and documentation standards instead

of continuing to approach software development in a service

unique manner (39:19).

To further satisfy the purpose of the workshop, the

subgroup defined a program to develop a military standard

for software development, MIL-STD-SDS, and a set of changes

to MIL-STD-483, 490, and 1521A (39:20). In addition, soft-

ware documentation standards were developed that identified

the types of documents needed to support missioh critical

computer resource software (36:200). At this time, there is

not an approved or coordinated position of the Joint Logistic

Commanders.

30

" '..,"" .."',:' /." "."-" ' .",'. '."."To''. -. '.'."."". -" ." -" "" "..".".".."".""..".."".."".."..•".."......"."....-."." "* " "."".-

The effort to adopt common joint service policy and

standards is well under way. The potential cost savings

are significant. "No longer will industry be required to

maintain multiple-management control systems. By providing

a more uniform environment for software development, joint

service programs should run more smoothly" (36:200).
...

Software Quality Assurance Prooram

Quality Assurance Planning. Planning involves the

-.. developing and formulating a course of :".
action, and the output results constitute a plan.

It is the systematic identification of orogram
tasks, task schedules, and the resources required
for task accomplishment. Planning is necessary
to achieve some degree of order in completing
activities scheduled in the immediate future and
for long-range activities that are forecasted far
out in time (7:47).

According to the definition above, the output of qual-

ity assurance planning is the formation of a plan. On a

broad scope, a quality assurance plan must indicate the

particular activities that will achieve the required level

of quality. This quality plan should include at least the

following topics:

1. Organization: The organizational approach includes the

definition of roles and responsibilities of each group

in the organization. The independence and reporting

lines of the quality assurance group must be clearly

established.

2. Requirement Traceability: This defines the methodology

to assure the requirements in top level specifications

are satisfied in the lower level specifications.

31

3. Documentation: The documentation must be defined to

assure formal, controlled communication, standards for

the document preparation, and the measurement of com-

pliance with standards.

4. Techniques and Tools: The application and verification

of the quality related techniques and tools must be

defined.

5. Formal Reviews: A definition of the reviews must be

made to assure readiness and how the reviews are to be

-:. accomplished.

6. Test Program: The plan must specify the measures for

technical review of the test procedures and compliance

with prescribed standards.

7. Configuration Management: The quality assurance con-

siderations include a software library with control pro-

cedures to assure identification of the products and

prevention of unauthorized modifications, and definition

of procedures for the generation, disposition, tracking

and closeout of design and test discrepancies (48:195).

Two documents give assistance in developing software

quality assurance plans, MIL-S-52779A and IEEE Standard 730.

The first document, MIL-S-52779A, applies to the acquisition

of software either alone or as part of a complete system.

It requires the establishment and implementation of a soft-

ware quality assurance program. Figure 8 illustrates a

software quality assurance plan as proposed by MIL-S-52779'

32

1. Work Tasking sad Authorization Procedures

a. Procedures and Schedules
b. Work Descriptions
c. Status Reports
d. Resources Estimates

2. Configuration Management

a. Baseline Establishment
b. Change Accountability
c. Audits

3. Testing

a. Analysis to Determine Testability
b. Test Plan/Procedure Review
c. Monitor and Certification of Test Results
d. Tests vs. Requirements Traceability

4. Corrective Action

a. Problem Reporting and Measuring
b. Trend Analysis
c. Corrective Action Assessment

5. Library Controls

a. Code Control and Related Documentation
b. Media Identification and Protection
c. Change Control

6. Computer Program Design Review

a. Contract Compliance
b. Evaluation of Design Logic

7. Software Documentation

8. Reviews and Audits

9. Tools, Technologies, Methodologies

10. Subcontractor Controls

Figure 8. MIL-S-52779A Software Quality Assurance
Plan (17)

33

*. -... . . -- .. - -.- ,.'...'

1. Purpose

2. Reference Documents

3. management

a. Organization
b. Tasks
c. Responsibilities

4. Documentation

a. Purpose
b. Minimum Required Documentation: Software

Requirements Specification, Software Design
Description, Software Verification Plan

c. Other: Computer Program Development Plan,
Configuration Management Plan, Standards and
Procedures Manual

.L..

5. Standards, Practices and Conventions

a. Purpose
b. Content: Document Standards, Logic Structure

Standards, Coding Standards, Coen tary Standards

6. Reviews and Audits

a. Purpose
b. Minimum Requirements: Software Requirements Review,

Preliminary Design Review, Critical Design Review,-
Functional Audit, Physical Audit, In-Process Audits

7. Configuration Management

8. Problem Reporting and Corrective Action

9. Tools, Techniques and Methodologies

10. Code Control

11. Media Control

12. Supplier Control

Figure 9. IEEE Standard 730 Quality AssuranceL

4'. ostPlaon, (12)e eiiato la '

34

The second document to assist the planning effort is IEEE

Standard 730. This standard applies to the development and
S

maintenance of critical software (i.e., where failure could

impact safety or cause large financial or social losses).

Figure 9 illustrates a plan under IEEE Standard 730. An

early involvement in the planning process is the key to a

successful software quality assurance program (46:497).

Staffing and Organization. The success of any quality
S

assurance program begins with the personnel assigned to the

project. The most effective means of obtaining knowledge-

able quality assurance personnel is through the transfer of

well-respected and competent people from the development

group. This has many advantages, such as familiarity with

the type of software developed and procured, insight into

known weaknesses, rapport with in-house designers, and the

knowledge of how to operate within the organization (25:269).

It is not enough for quality assurance personnel to
L

merely possess the characteristics, for example, of good

systems analyst. They must have the respect of peers and

all levels of management with whom they must interface. .

Also, they must have good communication skills and be able

to use logical persuasion. The success of the organization

will depend on the individual's ability to sell his ideas

for improvement (35:95).

An organization can set up a quality assurance depart- I
ment in many ways. Figure 10 depicts a simplified view of

an organization with quality assurance placed as a staff

35
-° -

•__ ...) -° V... . * -.*.. *...

function reporting to the General Manager. This structure

ensures that quality assurance will receive the attention

of the General Manager and ensures independence from other

departments. Figure 11 depicts a quality assurance depart-

ment embedded in the overall organizational structure of the

project organization. With this type of structure, coordi-

nation between projects and even with the General Manager

becomes difficult or time consuming. Figure 12 depicts a

functional organization with quality assurance placed on the

same level as other departments. This structure, with qual-

ity assurance as an independent function reporting directly

to the General Manager, provides good independent oversight.

As another example, Figure 13 depicts a matrix organization.

Under this type of structure, there is a top-level quality

department and lower-level quality assurance departments for

each project. A matrix organization allows independent

checks for each project falling under the General Manager's

control.

The need for independence cannot be stressed too highly.

Many times software is developed under the most demanding of

schedules. Requirements may be ill-defined or late, comple-

tion of the systems analysis may slip, or hardware avail-

ability may be delayed. Only one thing never changes, the

"end date." Under thes' circumstances there is pressure to

skimp on test planning, various documentation of the design,

library control procedures, test documentation, reviews and

audits. Only the devotion to quality of an independent

36

*% :

-37 1 ..

m,-~~~. 77.*37 -_.-

, "-.'.4

raJ

V-4

41
ca

-t

Niici

.'91

.,

37

9o'., *

.1.
°°

IE-1

C3)

caa - f-4

044
4 4m

LA

U)4.
C3i

38.S.

r.i

U) '0

0-43

0~0

044

cnn
:3I
00 ci LL

'-4 .g

390

'4 4

0

ad 2I $44
.4-

E-4

L.-

1-4~

E-40

400

functional activity can stop those who might compromise

quality in an attempt to recover schedule slippages or cost

overruns. Independence is the key (25:271-272).

Reviews and Audits. Controlling involves "the monitor-

ing of program activities to ensure that the end objectives

are being met" (7:48). Thus, controlling means to use checks

and balances on a periodic basis so that problem areas can be

detected as early as possible in the software development a.
process. Basically, this is accomplished through a combina-

tion of reviews and audits.

The purpose of a review is to examine the system require-

ments and design to assure appropriate technical progress

according to plan. The purpose of an audit is to determine,

through investigation, compliance to and adequacy of estab-

lished specifications and standards (6).

Naturally, the number of review points depend on a num-

ber of variables such as size of the system and makeup of the

quality assurance organization. But the general consensus is

that reviews must be predefined, occur at key points in the

development process, be understandable and complete, and are

conducted in accordance with prescribed standards.

The IEEE Standard 730 proposes a certain minimum number

of reviews which should be conducted during the software life

cycle (12:48). These include:

1. A software requirements review to ensure the adequacy of

the requirements stated in the software requirements

specifications.

41

-7. . --- .. -~ -._ -. I

2. A preliminary design review to evaluate the technical

g adequacy of the preliminary design of the software.

3. A critical design review to determine the acceptability

of detailed software design.

The recommended audits consist of:

1. A functional audit, held prior to software delivery, to

verify compliance with all requirements specifications.

2. A physical audit to verify that the software and docu-

mentation are internally consistent and ready for

delivery.

3. In-process audits to verify consistency of the design,

such as peer audits.

Several Air Force regulations, specifications, and

standards provide guidance on conducting reviews and audits.

In particular, MIL-STD-1521A provides guidance for the

following formal reviews and audits (16):

1. System Requirement Review (SRR): Conducted to determine

initial direction and progress in defining system

requirements.

2. System Design Review (SDR): Concerned with evaluation

of the total system requirements.

3. Preliminary Design Review (PDR): A review of the top

level software design in response to the software

specifications.

4. Critical Design Review (CDR): Concerned with the crucial

review of the detailed design of the software prior to

the start of software coding.

I' 42"o .7

5. Functional Configuration Audit (FCA): Ensures that the

delivered computer code actually does what is asked for

in the specifications.

6. Physical Configuration Audit (PCA): Ensures that the

support documentation accurately and clearly relects

the software.

7. Formal Qualification Review (FQR): Verifies that the

actual performance of the software as determined through

test complies with its specifications.

Using these reviews and audits, the developing organization's

technical progress can be monitored. They also reveal the

technical progress of the phases in the software life cycle.

Referring back to Figure 3 gives a basic look at how the

reviews and audits fit into a software life cycle.

Software Testinq. The test design, which forms the

testing philosophy, is usually based on two methods, bottom

up and top down (6). Bottom up testing begins by testing

each software routine or module as it becomes available from

the development group. Routines are then combined and tested

until the entire software product has been tested. Top down

testing begins by integrating and testing the highest level

routines. After these routines are integrated, the process

is repeated for routines at the next lower level until all

the software is successfully integrated. The advantages and

disadvantages of each approach are summarized in Table 3.

Unit testing, performed by the software development

group on each routine, is the lowest of software testing.

43

c rr- w r rrr.

TABLE 3

Advantages and Disadvantages of Bottom Up and Top Down (6)

Bottom Up

Advantages Disadvantages

High risk routines tested early Testing difficult because
interface problems and system

Utility routines are developed requirements not addressed
early and tend to be common early
to the program

Hard to maintain visibility of
Easier to control testing entire software system
conditions

Difficult to change because
Development of top level interfaces may be "kludged"
structure can be delayed,
allowing selection of a specific Data base structure not
machine to be made later addressed early can result in

"kludged" data base
Dummy routines simple to develop

System cannot be executed
until late in testing

Top Down

Advantages Disadvantages

System executes early in Low level high risk modules
development and testing not developed early

Data structures and interface Multiple utility routines may
problems addressed and exist or redesign may be
resolved early needed to use common utility

routines
Testing can be done in
parallel at more than one Developing top level structure
level early may force project to

specific machine(s) too early
Easier to maintain visibility
of the entire software Dummy routines must be
system developed

Testing conditions may be hard
to control

Coding of top level routines
may begin before the design
is completed

Error conditions may be more
difficult (costly) to
exhaustively exercise

44

.... ~ '4.-

It is intended to make each executable section of code, rou-

tine or module, as error-free as possible and is oriented to

finding errors which commonly occur in the development of

software (6).

After routines have successfully completed unit testing, .,-.

they are combined and executed in integration tests. In a

typical project, the responsibility for software integration

testing will be divided between the development and testing

groups. The lowest level of testing may be conducted by the

programming teams that developed the software. Tests not

conducted by the programming teams are executed by individ-
L_

ual test teams (6).

Independence of the test team becomes important here,

and can be accomplished by using an independent verification

* and validation (IV&V) process. During the IV&V activity,

- deficiencies will be discovered. The software development

group must not receive direction form the IV&V team to cor-

rect the deficiencies. Rather, the deficiencies should be

given to the quality assurance management for action. This

is done to preserve the independence of the IV&V team

(45:660).

Tests performed by the test teams require more formal

documentation of the testing effort. Four types of docu-

ments are usually required: test plans, test procedures,

test execution reports, and test results analysis reports.

These documents encompass the planning, execution, and

analysis of the test process (13:92).

45

Software quality assurance should become involved in

testing in a number of areas. Before the testing begins,

quality assurance should ensure that all software, hardware,

and the testing environment are under critrol. It should

witness loading and running of the software and ensure the

test results are retained and discrepancies noted. Finally, I.

quality assurance should participate in the post-test anal-

ysis and certify the test report on satisfactory completion

(48:198).

MIL-S-52779A, the specification for software quality

assurance, contains a comprehensive list of software testing

procedures. These procedures consist of:

1. Analysis of software requirements to determine
testability.

2. Review of test requirements and criteria for
adequacy, feasibility, and traceability and
satisfaction of requirements.

3. Review of test plans, procedures, and speci-
fications for compliance with contractor and
contractual requirements and to insure that
all authorized and only authorized changes
are implemented.

4. Verification that tests are conducted in
accordance with approved test plans and
procedures.

5. Certification that test results are the actual
findings of the tests.

6. Review and certification of test reports.

7. Ensuring that test related media and docu-
mentation are maintained to allow repeat-
ability of tests (17:3-4).

Many software producing organizations do not understand

software testing techniques, or the importance of continuous

46

.......................... .

7. K
° .

testing. But by increasing the awareness of software testing

through training programs and encouraging test development

throughout the software life cycle, these organizations can

minimize problems with the software and maximize software

quality (15:14).

Configuration Management. Configuration management con-

sists of identifying the configuration of the software at

discrete points in time. The purpose is to systematically

monitor changes to this configuration and maintain the integ-

rity and traceability of this configuration throughout the

software life cycle (47:31). Quality assurance, through

configuration management, should enforce the following:

1. Configuration Identification: The functional and phys-

ical characteristics, or configuration, of the software

is identified by and documented in a series of specifi-

cations.

2. Configuration Control: In the configuration control

process, changes to the established software specifica-

tions are classified, evaluated, approved or disapproved,

released, implemented, and verified. The purpose is to

assure that the software configuration used in critical

phases of testing, acceptance, and delivery is known and

compatible with the specifications.

3. Configuration Status Accounting: Status accounting is y
the recording and reporting of data concerning the soft- %:

ware's configuration identification, proposed changes to

47

.-%I ° °.

-, ,-, -,, -= -=, p, . A=- .°-o %=-, -. -, . . , - - - - . -o-. °- - - . -.- - - - - - •- -.- . - - .= , . . ."_

its configuration identification, and the implementa-

tion status of approved changes (52:1.4).

Library Control. A key element in the quality assur-

ance program i; the software library which provides visi-

bility and control of software and software documentation.

Documentation and software storage, retrieval and change

processing are essential activities in a software library

(51:28).

A subcategory of library control is concerned with

organization and protection of software media (e.g., card

decks, magnetic tape and disk). Loss of information due to

defective media can be disastrous and cause project delays

(11:47-48). Included in this category of "media control" is:

1. Storage and protection of card decks, tapes, disks, etc.

2. Media duplication and verification procedures.

3. Media conversion materials and procedures.

4. Media identification and level of revision systems.

Another subcategory of library control deals with

"documentation control." It would be self-defeating to

ensure the correctness and completeness of the requirements

and design documentation if that documentation could be

modified without proper control. Few software projects

proceed to a successful conclusion without some changes to

the original requirements and design. Because of this, pro-

cedures for the orderly and controlled insertion of changes

must be defined, documented, and followed. By documenting

every change, no matter how minor, the requirements document

48

D-a.

* . -. • ' ,, * -- - - .. -- * . , . .- : .. . '.. .',,-. ,. ,.,. • . T ,....,.. ?

reflects what the final product will be during all phases of

development. This gives the quality assurance group a con-

tinuous and updated point of reference against which actual

software behavior and structure can be compared to determine

correctness (46:497).

Software Documentation. Perhaps the weakest link in

software development is documentation. There are a number of I
sources of information which provide guidelines concerning

software documentation, such as MIL-S-52779A and IEEE Stand-

ard 730. The military specification calls for referencing

in the quality assurance plan all documentation standards and

programming conventions and practices utilized on the soft-

ware project (17:3). The IEEE standard calls for identifi-

cation of the documentation governing the development and
SI

verification of the software and an explanation of how the

documents are to be checked for adequacy (12:47). Software

quality assurance must realize the requirement for good doc-

umentation and take steps to ensure that documentation which

accompanies the developed software is complete, clear, and

accurate.

An effective mechanism to ensure complete documentation

accompanies the developed software is by using a Unit Develop-

ment Folder (UDF) methodology. This documentation methodology

consists of a notebook with a table of contents and formal . -

schedule for entering information into the notebook for each

major software unit (6). The ultimate objectives that the

49 .

-7- -7.-

.4 '° ?

1 -- ,

content and format of the Unit Development Folder must sat-

isfy are:

1. Provide an orderly and consistent approach in the

development of the units of a program or project.

2. Provide a uniform and visible collection point for

all unit documentation and code.

3. Aid individual discipline in the establishment and

attainment of scheduled milestones.

4. Provide low-level management visibility and control

over development process (33:251).

Figure 14 illustrates the role of the Unit Development

Folder in the total software development process.

The Unit Development Folder is a readily accessible

repository for all important documentation and notes created

during the software development process, and becomes part of

the final documentation package when the software project is

completed (6). The following is a sample outline for a Unit

Development Folder:

1. Cover Sheet

2. Schedules and Milestones

3. Requirements

4. Design Description

a. Preliminary Design

b. Code-to Design

c. As-Built Design

d. Interface Considerations

50

".,

*% ,. - .- . - ,. , • .,% , % ", . . ,. - - - . - -, -. - - - . . -. . -.

a~ 4J

Isl s U)Ia CL
0

Id l 4d rz dd 4d d d 14

lag~

.~%%.d -o4

51)

5. User Instructions

6. Unit Code Listing

7. Unit Test Plan

8. Test Results

9. Notes

10. Reviewer's Comments

Quality Assurance Techniques and Tools. Experience has

indicated that good techniques and tools can serve as power-

ful aids in design, development, test, and maintenance of

software (44:52). The difference between techniques and

tools is very clear. Techniques consist of procedures

arranged to simplify the evaluation process. Tools, on the

other hand, are defined as automated aids used in evaluation

of the developer's software or procedures (43:210).

Software quality assurance employ the methods of inspec-

tion, analysis, demonstration, and test. Inspection confirms

compliance with stated requirements by examination. Analysis

studies in detail to confirm an answer or result analytically.

Demonstration provides tangible and visible evidence of com-

pliance for review and comparison against stated objectives

(43:210). Finally, tests are performed to find errors.

Quality assurance techniques and tools can be classified

based upon the method they support. Table 4 list available

techniques and tools by category. Of course this list is not

all inclusive. For ease of further discussion, a glossary

defining each technique and tool is provided in Appendix B.

Also by using tables, each technique and tool is related with

52 -l

l -7

usual quality assurance functions; and how each technique

and tool supports the evaluation of software quality is

illustrated.

First, Table 5 shows which technique supports various

quality assurance functions. Next, Table 6 displays the

degree of support each technique provides for assessing

software quality factors. Third, Table 7 shows which tool

supports what quality assurance function. Lastly, Table 8

displays the degree of support each tool provides for

assessing software quality factors.

As the tables indicate, there are many techniques and

tools available to improve software quality. One of the

major tasks in developing an acceptable software quality

assurance program is to select those techniques and tools

in the most efficient and cost-effective manner (43:226).

Selection should be done only after careful analysis of the

objectives desired by the techniques and tools, and analysis

of the criticality of the function to be evaluated. As an

aid, Table 9 provides a checklist method for analysis.

Techniques and tools can be a valuable and useful

addition to a software quality assurance program. But,

they should be well documented and thoroughly tested. If

the technique or tool itself is not validated, how can it

be used with confidence to validate other software or to

enforce standards (56:149).

53 *

5"

TABLE 4

Quality Assurance Techniques and Tools (43:211)

VCASM Itupection AM42b Damonauraboim rest

Tac-Audt Analytical modeling Functional testing Algorithm evaluationtIniqus Cods inspection Correctness proof Walk-ftrough. test
Design inpcto Efo- -ey Coffectnese proots
Reviewing Exscutiont analysis Equivalence classes

Po*st-rilonal Functional tetig

Simulationt Path testing
SPAndurdizatonI Sinvulation
Static anelysis Stress testing

________________________________Symbli execution

Tool Consistency cekrAccuracy study Dynamic simulator Automated test
Editor processor Hardware monitor generator
Requirements ta cer Comparator Software monitor comparator

m Stadd analyzer Consistency c -koStandards aawrDelugger
Cross-referencers Test bed Dynamic analyze
Data bass analyze Dynamic simulao
Decision tables Flowcharte
Dynamnic analyze Hardware mofihor
Editor Instructionl Ia
Floweharter Simulators
Hardware monitor Software monitor
Interface checkter Test drivers. scipts,
Interrupt analyzer Test-result processor
Logi analyzer
Simulators
Software monitorIStatic analyze
Structure analyze

__________ lming analyzer ______ _____

Sup- Language processors
port Ubrane
tool MIS
(Comn- Standards,
mon) Teot editor

54

-%~x Jox5~ 0 x x x

C4XX xx x xxxxx x

0

LA.
#O4uo.0) x x

(*) ANW. 7

S-4
UOI39 x x x

LA >. kfaexxx x xxxxxxxx)xxxxx
4J

I' x x
I- CUYS~lBJ0

0

5Ur4S.Jwom x x

0.x x
C 5wquuqjdAWOen x

0

Io

0

4C
C

-4 44C)CJ U U . J . C is 0
Q) C - d4 - 6a iC iC

-- - - - --

55

A~y~esn2.jx .jx jj-j j-j xxx2j-9

2222.* -.~~m22

04 AppoPVXXXX2M2X22XTXX2X2XXX_ -

AlaVqNZI.d -J- JX- 0- 2 - J-

C3 2222x2
CM

CZ 4

aI)

-J

rs -4 - .

Cl)t f
A 4uu0wwwU 0 .C

C4C i(-:w@ 4t3 i .,

C5

TABLE 7

Relationship of Tools to Quality Assurance

Functions (43:218)

Function

1. Accuracy study poesrX
2. Automrated test generator x I
3. Comparator X X x

S1. Edioweroe
12. Dlwarteeayer xX
13. Dwaggr mntrX
84. Dinsion tale x X x xx x

16. Inerrupt analyzer X

17. Lagugepto ar xX
12. Librcare X X
13. Locaalenr x

1.Inerfaeedotcker XX XX X
22. Imtruat anlye
17. Software mronitor X
18.SLibrares X X Xx x x x x x
25. Stanar analyzer xx X

26. Statdar analyzer X X X

27. Structure analyzer X x
28. Test bed x

29. Test drivers, scripts
30. Test-result processor x
31. Text editor X X X x X X X X X X
32. Timing analyzer x

57

TABLE 8

Tool Effectiveness in Assessing Quality (43:219)

_________________ uafty POOPOtY

rooks ba,

1. Accuracy study processor M L L L L L H L L
2.Automaedtoo geneator M L L L L L H H L.
3. Comparator LI.L L L L M MA L L
4. Consistency checker H L L L L L H MA L
5. Cross-reference M L L MA M L MA L L
6. Oatsabusanalyzer M L. L M M MA M MA L
7. Debugger M M L L. L L H L L
8. Decision tables M L M L L L M MA L.
9. Dynamic analyzer H H L. M M L. H MA L

10. Dynamic simulator H M L L L L H L. I.
11. Editor M L L M M L MA U L
12. Flowcnarter H L L M M M M H N
13. Hardware monlitor M H L L L L H MA L
14. Instruction trace L M L L L. L H M L
15. Interface checker H L M M MA L H L L

*16. Interrupt analyzer H L M M M L H L L
17. Language processor H M M H H H H H H
18. Libraries L L H L L L L L H
19. Logic analyzer M M L L L L H M L.
20. MIS H L L. L L L L L L
21. Requirementsatracer H L L M M MA M H L
2. Simulator H H M M M MA M M H
23. Software monitor M H L L L L. H MA L
24. Standardsn H H H H H H H H H
25. Standards anaiyzer H L M H H M MA MA M
26. Static analyzer H L M M M L M MA M

027. Structure analyzer H MA L MA M MA M M MA
28. Tesbed H H H H H H H H H
29. Test drivers. scripts M L L L L L H 14 L
30. Test-results processor M L. L M M M M H H
31. Tomteditor M L L H H L L H H
32. iming analyzer H L M M M L H L L

tigefi: H - High eEfcfleass
M- Mediumelff cIV~elu
L- Low .ffectwiwm

58

I~J.

CC

co 3

C)

-4

0
4.) *

N I

.

Chapter Summary

The preceding sections are the result of a comprehensive

literature review, and present the current views on software

quality assurance.

Primary problem areas that lead to schedule delays, cost

overruns, or software products that fall short of their

desired goals have been discussed. In addition, the compo-

nents of an effective quality assurance program have been 6

outlined and individually discussed.

In summary, the role of software quality assurance is

to guide software development; however, everyone involved

must participate in development if quality software is to be

developed. With proper guidance, software can be developed

that will satisfy user needs and garner the commitment of

everyone involved because they had a part in developing it.

.1

,.' ...

60

* .. , ... ,

III. Research Methodology

This chapter discusses the procedures used to collect

and analyze available information in order to satisfy the

research objectives proposed in Chapter I. Specifically, it -

focuses on data collection by means of a literature review

and personal interviews, and criteria for data analysis.

Data Collection

The first research objective deals with identifying

various software quality methodologies. In order to satisfy

this objective, an extensive literature review and personal

interviews were performed.

Literature Review. The literature review provided an

information baseline for further research endeavors, and

consisted of the following sources:

1. Air Force Institute of Technology (AFIT) Libraries. In

these libraries many computer and engineering journals

were located. The most beneficial journals were those

by the Institute of Electrical and Electronics Engineers

(IEEE).

2. Defense Technical Information Center (DTIC). Extensive

use was made of OTIC to gather information from all areas

of the DoD relating to software quality. --

3. National Aeronautics and Space Administration (NASA).

The information obtained from the NASA search was, for

the most part, too technical for use in this research.

61

%- -

...- * *%*.*.~.,- .°° K..*

7.; -. 2.r

But a few DTIC documents were located from the NASA

search that were not identified by the DTIC search.

This is difficult to explain sinne the same key words

were used for both the DTIC and NASA searches.

4. Air Force Publications Library. The Wright-Patterson

Air Force Base, Aeronautical Systems Division (ASO)

publications library provided information from Air Force

regulations. This proved very useful defining the Air

Force position.

5. Military Standards and Specifications. The Wright-

Patterson Air Force Base, Air Force Weapons Laboratory

(AFWL) technical library contributed references from

military standards and specifications used in this

research effort.

Interviews. After considering the intent of the research

effort, the level and nature of the data needed, and the

availability of adequate respondents, a "personal interview"

approach was chosen to complete the data collection. Usually

the interview approach is the only practical way to gather

opinions, intentions, or knowledge (26:213). Once the

approach was selected, the communication mode was developed.

The communication mode involved a series of questions

used as an interview guide. These questions were developed

with the awareness that sequencing, wording, respondent sen-

sitivity, and content influence the instrument development

process (26:Chapt 8). In particular, question content had

62

the greatest impact on the process. To overcome this problem,

the following questions were considered:

1. Should this question be asked?

2. Is the question of proper scope?

3. Can the respondent answer adequately?

4. Will the respondent answer adequately?

The interview questions were designed around the liter-

ature review from the previous chapter. Primarily, the sec-

tion on the software quality assurance program made up the

basic framework for the interview questions. Routine ques-

tions such as name, position, and experience were then added.

A sample of the interview guide and cover letter is included

in Appendix C.

Before any interviews can take place, the organizations

involved with the interview process must be chosen. The

criteria for selection included the following:

1. The organization must have an active quality assurance

program in existence.

2. The organization must be involved in software development

in some way.

3. The organization must be accessible to the researcher.

4. The organization must be willing to provide information.

5. There will be both civilian and Air Force organizations

chosen.

Using the above criteria, the following civilian organ-

izations were selected:

63
4 ,.4 °

1. TRW Defense and Space Systems Group

2. SOFTECH Incorporated

3. NCR Corporation

In addition, the following Air Force organizations were

'4 chosen:

1. ASD/B1M Directorate of Projects

2. ASD/EN Computer Resources Focal Point

3. ASD/PMDQ Quality Assurance Division

4. ASD/YW Deputy for Simulators

After the organizations were chosen, a preliminary

interview was scheduled with a senior manager from each

organization. Actual interview respondents were selected

with the advice of the aforementioned senior manager. The

preliminary interview also servied as an opportunity to test

and validate the interview questions. The interview guide

and cover letter were distributed prior to the interview to

allow preparation by the senior manager.

Data Analysis

As the research objectives in Chapter I are subjective

in nature, it follows that the research analysis will be

primarily subjective. In addition, since the research covers
a potentially large variety of concepts, each with its own

uniqueness, the information does not lend itself to statis-

tical analysis.

Criteria. Before any analysis can start, criteria must l.

be established on which judgement may be based. After

64

"=" ?.- .

reviewing the available literature, it was decided that the

opinions represented in the literature was the most effec-

tive method of identifying the criteria needed for analysis.

Those topic areas that recur most often in the literature

were selected as the criteria needed for comparing and cri-

tiquing. To be more specific, the following criteria were

chosen:

1. Planning. Planning is essential for the successful

achievement of any project. It is critical that all

planning be documented, such as in a quality assurance

plan, so that knowledge will not be lost during the tran-

sition of personnel. Also, planning must start early in

software acquisition and development. This allows early

detection and correction of problems. Furthermore,

higher management must be involved with the planning

process, so that decisions can be made based on complete

information. In addition, user involvement is imperative

for complete requirements definition. In fact, user

involvement is essential throughout the software develop-

ment process to assure the highest quality product possible.

2. Staffing and Organization. The success of a quality assur-

ance program begins with the personnel assigned to it.-'

Members of the quality assurance staff should have a rela-

tively high level of technical expertise and a thorough

understanding of good software quality assurance practices. .*

In addition, as a group they must report directly to the

program or general manager. This allows for knowlegable

65

t . .- - A. .,.* * '

people to advise higher management on potential problems

and possible solutions to those problems. Also, the

software quality assurance staff must have direct author-

ity over the software product by being an independent

group within the organizational structure. This allows,

as much as possible, unbias decisions to be made and

unbias information to be gathered for analysis.

3. Reviews and Audits. Through a combination of reviews and

audits control is maintained. Reviews and audits must be

predefined, occur at key points in the development proc-

ess, be understandable and complete, and are conducted in

accordance with predefined standards. Again, a key point

to mention is the importance of documenting the results

of all reviews and audits. How else can new personnel or

even management know what is going on unless the documen-

tation is complete? Also by using reviews and audits, an

organization's technical progress can be monitored through

the software development phases.

4. Software Testing. Testing is a structured activity that

occurs throughout software development. By increasing

the awareness of software testing and encouraging test

development, organizations can minimize problems with the

software product and maximize software quality. It is

crucial that independent verification and validation be

used. Without it, confidence in the software product is

jeopardized. Also, quality assurance personnel should be

involved. This establishes a control that might be missing

66

if software developers did everything themselves. Finally

the issue of documentation, without it the test results

would be known to only a select few and management would

be lacking important analysis information.

5. Library Control. Vital software library responsibilities

include media control and documentation control. Protec-

tion of software media is necessary to prevent loss of

information due to defective media or uncontrolled modi-

fication to the media. Likewise, documentation control

ensures the correctness and completeness of the software

documentation is maintained. Without these control meas-

ures, the integrity of the software product would be in

question. I -.

6. Documentation. As mentioned before, documentation is "'

critical to understanding the software development proc-

ess. Everyone must realize the requirement for up-to-date *.. ,,
-. s..

documentation and take steps to ensure that complete,

clear, and accurate documentation accompanies the software

product. Understanding what standards are available is

essential in developing good documentation. Therefore,

referencing all the necessary standards in one document

is an invaluable aid to the software developer. Another• ..!...

aid to ensure complete documentation is the Unit Develop-

ment Folder methodology. This methodology provides a

collection point for all unit documentation and software

code.

67 *

-. I .

'a % *~ %\ %P/ .~ *1* *. . * % l~ - *** ~ - *.. -~-• oo. ,.

7. Techniques and Tools. Good techniques and tools can

serve as powerful aids in all the software development

phases. But they should be well structured, documented,

and thoroughly tested. If not, how can they be used

with certainty to validate other software?

8. Training. As previously mentioned, quality assurance

personnel should have a thorough knowledge of quality

assurance practices. An effective way of developing this

knowledge is through training programs. Two such pro-

grams where effort should be focused are initial training

and on-going training. An initial training program will

allow new personnel to acquire the "bare essentials."

Whereas an on-going training program will benefit every-

one by keeping them educated in the most current practices

used today. Anyway you look at it, quality assurance can-

not grow or develop if there are not trained personnel in

the field of quality assurance.

To have an effective quality assurance program, an organ-

ization must satisfy all the criteria mentioned above. This

criteria establishes the minimum requirements and does not

limit an organization from increasing its quality assurance

program. To summarize the criteria discussed in this section,
..°

the following list is provided:

1. Planning.

a. Planning is documented.

b. High management is involved.

68

... : ~ .- ~*~~~v* 4 I" -~ ~44-4 *44 ~* -.. °° "44

c. User involved.

d. Started early in software development and acquisition.

2. Staffing and Organization.

a. Technical personnel included that are trained in

quality assurance practices.

b. Reporting is directly to program or general manager.

c. Independent staff with authority over software product.

3. Reviews and Audits.

a. Reviews and audits occur at pre-defined points.

b. Results are well documented.

4. Software Testing.

a. Independent verification and validation is used.

b. Results are documented.

c. Quality personnel are involved.

5. Library Control.

a. Controlled access is essential for software media.

b. Documentation changes are controlled.

6. Documentation.

a. A Unit Development Folder approach is used.

b. All software standards, specifications and such are

referenced in one document.

7. Techniques and Tools.

a. Techniques and tools used are validated.

b. Techniques and tools are documented.

8. Training.

a. On-going training is conducted.

b. An initial training program is established.

69

£ ~;.- ... ,

Comparison. The second research objective deals with

comparing software quality methods used by civilian and Air

Force organizations. This objective was answered by compar-

ing the civilian interview data and the Air Force interview

data against the literature review data. All comparisons

were accomplished using the criteria previously mentioned

and deviations from the criteria were summarized.

Critique. The final research objective pertains to

critiquing the effectiveness of the software quality methods.

To complete this objective, all data collected was critiqued

using the criteria mentioned before and areas needing improve-

ment were identified. Next, recommendations and conclusions

were developed to offer suggested ways to strengthen the

quality assurance program.

Chapter Summary

The contents of this chapter established the methodology

used to collect and analyze the research data, and consisted

of the following:

1. Collecting data on current quality assurance practices

by means of:

a. A literature review.

b. A series of structured interviews.

2. Analyzing the data by:

a. Comparing the civilian, Air Force, and literature

review data.

70

b. Critiquing the collective data for effective software

quality methods.

In summary, a well established research methodology is

a road map to successful research by telling us were we went

and how we got there.

IJ

k-* N

71

IV. Research Observations

This chapter will present the results of the comparison

made between the civilian interview data, the Air Force

interview data, and the literature review data. To prevent

the possibility of compromising proprietary information,

direct reference to specific organizations will not be made.

Instead, summary references will be limited to "civilian

companies" or "Air Force agencies."

Organization

Organizations for software quality vary as do the organ-

izational titles. Titles range from Quality Control to Qual-

ity Assurance to Product Assurance and others.

There appears to be a trend in civilian industry towards

combining many of the functional disciplines into the same

organization to take advantage of their related influences

on software quality. This combining of disciplines provides

a much better use of resources since the same individual

could perform several related tasks that were previously

fragmented. The Air Force agencies, for the most part, were

fragmented into different functional disciplines.

This fragmentation contributes to the lack of a strong

voice in making software decisions. In addition, it hinders

the development of a unified quality assurance position that

would maximize software benefits.

72

.o

.*..,.,. ,,.=.,..... .,,,.- .+,,. ,- ,,, , *.'~,',..... , ... -. .. ,-,--

In industry, where top management felt software quality

was important, the quality organization reported directly to

the top management official. In U.S. defense contractor

organizations, quality assurance is independent of manufac-

turing and reports directly to the top management official.

Whereas quality assurance in the Air Force agencies was tied

to manufacturing.

Even among the military services, the quality assurance

organizations and the level in the organizational structure

vary. In the Naval Material Command (NAVMAT), as illustrated

in Figure 15, the Deputy Chief of NAVMAT for reliability,

maintainability and quality reports directly to the NAVMAT

Commander. Each of the Naval Systems Commands below NAVMAT

also have a quality organization. At that level, a matrix

concept is used (42:21).

The Army also has a strong and disciplined organization

for quality assurance. As indicated in Figure 16, this

organization reports to the Commander of the Development and

Readiness Command (DARCOM). Each subordinate product command

has a quality assurance organization for development and

another for readiness. Quality assurance in DARCOM is organ-

ized to assure and assess quality at all phases of the acqui-

sition process (42:22).

In contrast, the Air Force agencies had small quality

assurance staffs. These staffs were located three levels

below the Commander and reported to the Depute for Contracting

and Manufacturing.

73

Sdr I " ," ; e
o

•°. -' " - - -.d -. ,

NAVY

COM4MANDER

DEPUTY CHIEF FOR RELIABILITY,

PRGRM AITANAILTYQUALITY MANUFACTURING
AAISTAISBIEIT ASSURANCE TECHNOLOGY

Figure 15. NAVMAT Organizational Structure (42:21)

ARMY

DIRECTOR OF
QUALITY ASSURANCE

DIVISIONS

PRODUCT [UALT SYTEM
QUALITY ENGINEERIN ASSSMENT

Figure 16. DARCOM Organizational Structure (42:22)

74

-. --- - - - - - - - .

There appears to be a direct correlation between the

influence of the quality assurance organization on manage-

ment decisions and the level in the overall organization.

Quality assurance in the Army has an independent and

equal voice with other functional organizations. Within the

Air Force Agencies, the quality assurance organizations are

- normally too low in the overall organization to be influ-

ential. Because of this, quality assurance has neither an

equal nor independent voice.

Planning]:::

It was observed that quality assurance planning, within

the civilian companies, included developing design require-

ments and criteria which are often published in company

handbooks or procedure manuals which supplement industry or

government standards. These efforts relect the experiences,

lessons learned, and proven techniques for assuring a qual-

ity product.

The Air Force agencies generally did not have as disci-

plined an approach to assuring quality. The primary control

document used was MIL-S-52779A, Software Quality Assurance

Program Requirements. The intent of MIL-S-52779A is not to -.,,':

specify a particualr way for a company to organize. Instead,

the purpose is to specify important software development

functions that must be accomplished by contractors in order

to assure quality (6). With this approach, an inherent weak-

ness becomes obvious, just because functions are specified

75

• .,.

doesn't mean that the contractor has the ability to assure

the quality of the software product. An early review of

the contractor's quality plan is needed.

Quality Measurement

Measurement of quality begins by determining the con-

tractor's capability to produce the software product and the

effectiveness of his quality assurance program to assure a

quality product. The civilian companies surveyed evaluate

a sub-contractor's total capability for producing and con-

trolling conformance to the requirements. The sub-contrac-

tor's past performance is also considered as a strong indi-

cation of future performance. In addition, there is a

tendency to select the best performers even though they may

not be the lowest in develqpment cost'.

In the past, Air Force evaluations of a contractor's

capability, quality assurance system, and quality management

were often performed only by evaluating the contractor's

Quality Assurance Program Plan during source selection.

Often the influence to incorporate needed changes to the

contractor's system is lost because these changes are not

detected early in the competitive environment. After con- .

tract award, such changes are difficult to implement even
I,

though the contractor's system is obviously deficient and

the change will result in improved software quality.

Currently, a review of the bidder's software develop-

ment capability and capacity has been defined and used by

76

6 ---

some Army and Air Force acquisition organizations. The Soft-

ware Development Capability/Capacity Review (SDC/CR) covers

software project management, management tools, development

tools, and personnel (4).

Within 30 days of receipt of proposal, the source selec-

tion organization will schedule a SDC/CR to be held at the

primary software development contractor's facility. All

contractors who will have substantial software development

responsibilities for the proposed system should be available

for the review. The review will be limited to two working

days and will take place no later than 60 days after the

beginning of source selection. The SDC/CR is an integral

part of the source selection process and is included in the

evaluation for contract award (3:1).

User Involvement

The Air Force agencies agreed as to the extent of user

involvement needed during the software development process.

The user should be involved throughout the process, espe-

cially early in the planning phases. But the civilian com-

panies had differing viewpoints. One viewpoint was similar

to the Air Force agencies, since both groups are affected

by the same regulations and standards.

Another viewpoint was from those companies not involved

with DoD software contracts. They believe since the user is

a source of new requirements, the user should be involved in

writing the functional specifications. But users are not

77

directly involved after the specification has been written.

This permits more management control over the development

effort. Instead, users are allowed to submit changes. These

changes must go through a control board for review. This

allows management to control and coordinate the changes.

Even though there are varied positions on user involve-

ment, one point must be clarified. The Air Force pays for

its user involvement through increased software contract bids.

Testing

Whenever specific quality levels are required, verifi-

cation testing is considered almost sacred. Only by such

testing can management have confidence that the software will

perform as intended. Testing is an iterative process and

seldom if ever will the first time through Pe successful.

Civilian companies have found out that numerous field fail-

ures are the direct result of failing to perform test and

evaluation adequately.

In contrast, the Air Force tends to push state-of-the-art

advances because of operational requirements. As a result,

problems may arise in perfecting these new techniques and

cause schedule delays and cost impacts which often result in

cancelling testing that could have identified these problems.

The irony is that when these inherent problems are not iden-

tified and eliminated early, then schedule and cost impacts

tend to be even greater. Such schedule anc cost impacts

further encourage shortcuts and the introduction of even more

78

a.

problems, and the circle continues. Therefore, the more a

new software product advances technology and performance,

the greater the need for the application of quality assur- . ..

ance principles and techniques. Yet, the more likely they

will not be used due to cost and schedule considerations.

.4,...'

Documentation

There are many problems or shortcomings connected with

software quality documentation. To begin with, many regu-

lations and standards used for software development are based

on procedures developed for hardware. Also, references made

to other regulations and standards are extensive and cross

referencing can be considerably time consuming. Finally,

there is a problem associated with too many regulations,

standards, and~guidelines. If personnel are flooded with

directives, there is confusion regarding which to follow and
.. -.

the tendency may be to ignore the directives and improvise.

Therefore, to alleviate these problems, a consolidation

of relevant information from all necessary regulations into -

one general software quality document will provide distinct

advantages. First, a standardized plan will enable DoD to

develop a standardized strategy with regard to software

quality assurance. Next, DOD and contractors will become

accustomed to standard operating procedures for evaluating

the quality of software. And finally, control on the part

of DoD will be more visible.

79 4%

I :.:

The groundwork in this direction was undertaken at the

Joint Logistics Commanders (JLC) software workshop held in

1979. Recommendations and plans for implementation are

developed, but no final document has been coordinated

between the services.

Techniques and Tools

Neither the civilian companies nor the Air Force agen-

cies extensively used software techniques and tools. The

civilian companies de-eloped their own tools to fit the

software situation. Very few commercially produced tools

were used. A noted weakness in this approach was the lack

of formal tool validation and documentation. Only by

repeated use were any defects in the tools corrected.

Within the Air Force agencies only a few tools were

used, especially in simulation. These tools were purchased

commercially and due to the competitiveness of the market

were verified and validated by the producer. Probably the

most effective technique the Air Force agencies used was

the checklist approach to evaluate procedures.

Even though software tools abound, their use should

only be considered where it will prove to be more cost

effective and more accurate to have the task automated

rather than performing it manually.

Trainin-

Training and training programs in the U.S. military

services and agencies range from extensive to almost non-

80

.. w: .~ , - . - , - . *= * . . * . - -. - - - 1- * _ , - - * * -. -T -- r

existent. The Defense Contracting Administration Service

(DCAS) has two excellent quality assurance training programs.

One is an individual certification program whereby quality

assurance specialists are certified in one or more areas.

The second OCAS training program is a formal intern program. I
This program is three years in length and consists of both

classroom and on-the-job training (42:36).

On-the-job training is received by personnel to assist

them to develop the skills needed to perform their assigned

tasks. Both the civilian companies and the Air Force agen-

cies relied heavily on this method of training. In addition,

their software quality assurance training has primarily cen-

tered on reading any available guidebooks.

The need for training cannot be over emphasized. If

software quality assurance personnel do not ahve the tech-

nical expertise to ensure that requirements are met, the

resulting effects on the software product may be devastating.

But if adequate training is provided, many benefits can be

seen:

1. Training in the use of software tools and techniques will

enable personnel to perform software quality assurance

functions as a group separate from and independent of

any other group.

2. Trained software quality personnel can perform activities

with skill and confidence, and ensure that projects are

completed within time and cost constraints.

81

* .- .. *% -*-. *~ -. * * .L ~. ~ .~*;.'";Y.".*

3. Training programs strengthen the professional level of

the personnel.

Benefits Gained

A number of benefits gained through the implementation

of a quality assurance program were gathered while conducting

the interviews. The following list is a composite of those

benefits:

1. It has provided increased management visibility into the

development process through reviews and audits.

2. Project risk has been reduced through more disciplined

and thorough testing.

3. Quality assurance records have been centralized. These

include problem reports, deviations and waivers, reviews

and audits, and test and inspection reports among others.

4. It assures certain elements of quality in every phase of

the software development.

5. The substantial reduction in the amount of rework has

lead to a significant savings in life cycle costs.

6. It allows delivery of computer software which meets all

contractual requirements.

Chapter Summary

In developing this chapter, a comparison was performed

between civilian, Air Force, and the current literature on

software quality assurance. Using the criteria established

in Chapter III, a comprehensive account of the different b

82 . .

S.,% ". "

viewpoints was presented in preparation for the next chapter,

where the recommendations and conclusions are offered.

Throughout the data collection ahd the analysis, one

* theme kept surfacing over and over. Software quality

assurance, in itself, does not create quality in a product,

instead it becomes a necessary part of everybody's job to

ensure the user gets the highest quality product possible.

83 -

....
'I% t

I2

,.:. *.* *. '.d. . ~ - * ~ '~ ~ - v*.'

V. Recommendations and Conclusions

This fifth and final chapter is the culmination of the

research effort. It endeavors to present inferences and
'5..

recommendations warranted by the nature and depth of the

research. In addition, this research purports not to pro-

vide the entire solution to the software problem as stated

in the first chapter, but to provide a contribution to the

ultimate solution.

Research Summary

Whether software is developed internally or by a con-

tractor, the program or general manager must ensure that the

software and its related documentation are of the highest

quality possible. The most effective means of achieving

these goals is a comprehensive quality assurance program.

Research has indicated that the minimum key elements for a

successful and effective program are planning, staffing and

organization, reviews and audits, testing, library control,

techniques and tools, documentation, configuration management,

and training. In addition, it was observed that there was a

common theme to the successful programs, both civilian and

military. That theme was there must be a disciplined approach

to implementing an effective quality assurance program.

This section is grouped into categories in order to pro-

vide for a logical presentation. These categories include .5

policy, organization, and education/training.

84

~ ~ * .5% '

Policy. Although military and civilian teamwork along

with excellent management have resulted in a few-highly suc-

cessful software projects, these effective management prac-

tices must be incorporated and used on a broader basis. The

implementation of current guidance in DoD directives and

military regulations (e.g., MIL-STD-1521A, MIL-S-52779A,

MIL-Q-9858A, AFR 74-1) is often incomplete or not effective.

In order to ensure proper emphasis is given to quality assur-

ance, a unique service-wide regulation that integrates the

tasks and functions defined in current regulations, standards,

etc. should be developed and approved. This quality assur-

ance regulation will not only provide for more effective use

of scarce software resources, but its approach will aid in

minimizing risks and achieve the required performance at the

lowest possible cost.

Included in this regulation should be sections explaining

each element of a software quality assurance program. The

weakness in current regulations is that only select elements,

such as quality assurance plans, are discussed. Without ade-

quate consideration given to each element of software quality

assurance, there cannot be an adequate quality assurance pro-

gram developed. Once this objective has been obtained, then

the work of implementing software quality assurance practices ,2

throughout the software development process will be performed

with greater facility.

Oroanization. The recent trend has been to combine many

of the functional disciplines into one organization, reporting

85 9

LX
'~' * **~ * *. *.

.' . -* ., .".,." , -.. .",- -. ' . . ".", . .,,, ., *, ,., 9. 9,. ,,,..¢..9 .. , ,.. ¢ -

7 'D-A147 552 A SUREY AND EALUATION
OF SOFTWARE QUALITY ASSURANCE

2/2
I(U) AIR FORCE INST OF TECH WRIOHT-PATTERSON AFB OH

U SCHOOL OF SYSTEMS AND LOGISTICS S P LAMB SEP 84p NCLASSIFIED AFIT /SY/LSY/845iF/G 9/2 NL

............. V.~~___ _ _ _ __ _ -

L3.6

*1.

1.6.

Iae

to top management. The Army (DARCOM) and the Navy (NAVMAT)

both have this type of structure. There is no quantitative

data to prove that these organizational changes have resulted

in improved product quality; but increased attention to qual-

ity assurance is definitely a by-product of these changes.

The organizational changes will also eliminate the

current Air Force fragmentation which exists. In addition,

the following advantages will result from the changes:

1. It enhances front-end involvement during design and

development phases.

2. It combines similar functions which are interrelated.

3. It provides clear and direct lines of communication.

4. It reduces duplication of efforts, multiple interpre-

tations, and conflicting direction.

5. It provides for continuing visibility and attention to

quality assurance by top management.

Education/Training. In comparing training available

within the Air Force to that available to the Defense Con-

tracting Administration Service (DCAS), it was obvious that

the Air Force agencies interviewed lag far behind. DCAS has

two well established programs which concentrate on quality

assurance and the related disciplines. The Air Force agen-

cies have virtually no formal training programs. As a result,

there is an obvious requirement for education and training

to assure that the work force remains current in quality

assurance practices.

6"..86 V.

a..**.* . '. : * * * . .. J .. ,. a' ., %* *-* P •-;* a ' " , f' Y • '* P' . . , , ',,

* ~ ~ . -. . . . - -. - -'o'T_.- -7 - - o

To begin with, all levels of management must have a

strong appreciation for the benefits to be gained from a

quality assurance program and they must continuously support

the program if the full value of the benefits is to be

derived. To achieve this goal, a short, intensive, on-site

training program presented by an authority in quality assur-

ance should be offered to top management, and should be under

way at all times.

In line with raising management appreciation for quality

assurance, there is a need to implement a formal training -

program to upgrade the skills and capabilities of the quality

assurance work force. This formal approach can take the form

of a certification program. There are advantages to certifi-

cation programs. First, they will provide a level of depth

at the technical level that will give the quality assurance

personnel the expertise and confidence necessary to deal with

contractor personnel. Next, they will be geared to govern-

ment systems and provide standard training. Finally, certi-

fication programs will encourage further in-depth training.

Another significant area which needs to be addressed is

the establishment of orientation instruction. This type of

instruction is necessary regardless of the amount of training

or technical expertise obtained by personnel. Orientation

instruction will provide personnel with a brief description

of the system, the specifications applicable to the system,

and the work already accomplished.

87

Finally, there should be an Air Force Institute of

Technology (AFIT) Education with Industry program established.

This will provide access to "corporate" knowledge and experi-

ence not obtained in the Air Force due to its personnel rota-

tion policy.

The education and training programs described above are

needed to upgrade the skills of personnel involved with soft-

ware quality assurance. These programs will also provide the
v-.

basis for Air Force career development.

Recommendations

Based on the research performed in this thesis effort,

the following recommendations are offered in hopes of

enhancing the quality assurance process:

1. Combine disciplines in one organization reporting to top

management and having line function responsibilities,

not staff function responsibilities. It is important to

emphasize that line managers are the focal points in

management control. They are persons who judgement are

incorporated in the approved plans, and they are the

persons who must influence others and whose performance

is measured. Staff people collect, summarize, and pre-

sent information that is useful in the process. However,

the significant decisions are made by the line managers,

not by the staff (2:21).

2. Top management must continue to re-emphasize the impor-

tance of quality assurance within the organization and

-"
.:..

88

J_," JI--Q'

• .% .

display a positive philosophy of commitment to the qual-

ity process. As has been discussed, without top manage-

ment acceptance, quality assurance programs produce a

less than desirable output.

3. Education and training programs must be developed to

assure availability of qualified personnel. These pro-

grams should include the following:

a. Intensive top management seminars.

b. Certification programs.

c. Orientation instruction.

d. Education with Industry programs.

4. A unique software quality assurance document should be

developed for joint service application. As a minimum,

the elements of a quality assurance program should be

addressed. While extensive progress has been made by

the Joint Logistic Commanders (JLC), much work needs to

be completed before a single document finds its way into

use.

5. Clear and concise documentation is an on-going problem

at any software developemnt facility. All efforts should

be made to review documentation and assist where possible

to improve any deficiencies.

6. Techniques and tools, whether uniquely developed or pur-

chased commercially, should be verified and validated as

thoroughly as the actual software product. The rationale

of repeated usage cannot be accepted as validation. All

89

aspects of the technique or tool should be documented in

order to develop confidence in the software product.

7. The philosophy of Software Development Capability/Capac-

ity Reviews (SDC/CR) should be incorporated into soft-

ware development contracts. So far, this review has

proven successful in evaluating a contractor's software

capability prior to source selection. As a result, many

potential problems can be prevented when inadequate

software contractors are eliminated early.

Problems Encountered

As with any research effort of this size, problems

occurred that should be mentioned to help explain any short-

comings. To begin with, the amount of time and effort needed

to complete the literature review took away from the time

available to do the field work and subsequent analysis. In

addition, proprietary information was encountered while con-

ducting the interviews. Due to the sensitive nature of this

information, no direct reference was made to any specific

company or organization.

Further Research

In this section, two major areas for further research
4,-.,

are discussed. These are quality assurance and training.

Quality Assurance. As this research has indicated,

software quality assurance is an area where software develop- .'-

ers must place a great deal of emphasis. It is felt that

90

% %, % - C .= . % ' ' -%.- .- * 4 44 4 4 4. 4 --.'-,. . -.. , ,.. .- ' '..'' '....

;Z- 7 re -Z -j -- vX.

another approach should be undertaken to further study soft-

ware quality assurance. One way research could be conducted

is by sending questionnaires to personnel in quality assur-

ance departments at other companies in the software industry.

The questionnaires should be designed to determine how soft-

ware quality assurance is managed. From this, the Air Force

would be able to evaluate the different methods and develop

quality procedures for the software the Air Force purchases.

Training. Technological advances in software develop- -

ment are resulting in improved quality assurance practices.

This is creating the need for software quality assurance

personnel with more specialized skills. Therefore, training

should be a major goal of any quality assurance organization.

This research effort has found that formal training is often

neglected. Further study should be conducted as to the

benefits and possible cost savings that could be derived from

quality assurance training and education. In addition, types

of training programs should be discussed so as to offer the

widest spectrum of training possible. Also, different Air

Force organizations involved with software development should

be researched to determine the requirements for training pro-

grams in software quality assurance.

Conclusion

It is critical to the success of large weapons systems

that software be delivered to the field with the minimum

91
~ ***..**..*..."..

•. .

number of errors. For this reason, the discipline of soft-

ware quality assurance is needed.

To provide the highest level of software quality, the

entire development process must include quality checks at

each step from design through acceptance test. An active

software quality assurance program that identifies and cor-

rects errors during the development process is necessary.

- This effort will lead to significant defects being identified

and resolved early; defects that would normally lead to major

schedule and cost impacts on the development effort.

If the quality of software is to improve, greater empha-

sis must be placed on software quality assurance as a sepa-

rate discipline. Quality software cannot be attained by

following hardware oriented plans and procedures, such as

MIL-Q-9858A. Therefore, software conformance standards must

be provided.

Technology is constantly changing and advancing, and

provision must be made to update personnel in the state-of-

the-art quality assurance practices. Continual training is

essential, both for those personnel who have quality assur-

ance background and those who do not.

Software quality assurance "is expected to employ the

best possible techniques and practices, assuring that the

products delivered as weapons systems are the best that
modern software technology can produce" (23:118). There is

no room for anything less.

92

b .*- .

_=-N

Appendix A: Directives/Mil-Standards/Regulations

This appendix identifies the government documents, by

type, that impact the quality assurance effort, and is pro-

vided to supplement the research.

Department of Defense Directives/Instructions

DODI 4105.65 Acquisition of Automation Data Processing
Computer Program and Related Services

OO0 5000.31 Interim List of DoD Approved High Order
Programming Languages

O00 5010.21 Configuration Management Implementation
Guidance

0001 5010.27 Management of Automated Data System
Development

DODI 7041.3 Economic Analysis and Program Evaluation
for Resource Management

DODD 4105.55 Selection and Acquisition of Automated
Data Processing Resources

DODD 4120.21 Specifications and Standards Application

DODD 4155.1 Quality Assurance

DODD 4155.19 NATO Quality Assurance

DODD 4160.19 Department of Defense Automatic Data
Processing Equipment Reutilization Program

DODD 5000.1 Major System Acquisition

DODD 5000.2 Major System Acquisition Process

DODD 5000.3 Test and Evaluation

DODD 5000.19-L Acquisition Management Systems and Data
Requirements Control List (AMSDL)

DODD 5000.29 Management of Computer Resources in Major
Defense Systems

DODD 5010.19 Configuration Management

93
L %

DODD 5100.40 Responsibility for the Administration of
the DoD Automatic Data Processing Program

Military Standards/Specifications

MIL-STD-1098 Quality Assurance Terms and Definitions

MIL-STD-480 Configuration Control-Engineering Changes,
Deviations and Waivers

MIL-STD-481 Configuration Control-Engineering Changes
(Short Form)

MIL-STD-482 Configuration Status Accounting Data
Elements and Related Features

MIL-STD-483 Configuration Management Practices for
Systems, Equipment, Munitions and Computer
Programs

L MIL-STD-490 Specification Practices

MIL-STD-499A Engineering Management

MIL-STD-781 Definitions of Effectiveness Terms for
Reliability, Maintainability, Human
Factors and Safety

MIL-STD-881A Work Breakdown Structures for Defense
Material Items

MIL-STD-882 System Safety Program for Systems and
Associated Subsystems and Equipment

MIL-STD-1521A Technical Reviews and Audits for Systems,
Equipment, and Computer Programs

MIL-STD-1535A Supplier Quality Assurance Program
Requirements

MIL-STD-1553B Aircraft Internal Time Division Command/

Response Multiplex Data Bus

MIL-STD-1588 JOVIAL (J3)

MIL-STD-1589C JOVIAL (J73)

MIL-STD-1679 Weapon System Software Development (NAVY)

MIL-STD-1750A Sixteen-Bit Computer Instruction Set
Architecture

94

MIL-STD-1760 Aircraft/Stores Electrical Interconnect

System

MIL-STD-1815 Ada .

MIL-STD-1862 NEBULA 32 Bit Instruction Set Architecture

MIL-STD-SDS Defense System Software Development
(Preliminary Draft)

O

MIL-STD-SQAM Software Quality Assessment and Measure-
ment (Proposed)

MIL-Q-9858A Quality Program Requirements

MIL-S-52779A Quality Assurance Program Requirements

MIL-S-83490 Specifications, Types and Forms

MIL-HDBK-334 Evaluation of a Contractor's Software
Quality Assurance Program

Regulations/Manuals

AFR 70-1 Procurement of AF Assigned Items

AFR 70-18 Local Purchase Program (AFSC Supplement)

AFR 76-15 Procurement Quality Assurance

AFR 300-1 Automatic Data Processing Program
Management

AFR 300-2 Management of Automatic Data Processing
Systems

AFM 300-6 Automatic Data Processing Resource
Management

AFR 300-10 Computer Programming Languages

AFM 300-12 Procedures for Managing Automatic Data

Processing Systems

AFR 310-1 Management of Contractor Data

AFR 310-2 Management of USAF ADP Program

AFR 800-14 (Vol. I) Management of Computer Resources
in Systems

95

,-,-. 9 5 .' -'>

AFR 800-14 (Vol. II) Acquisition and Support Proce-

dures for Computer Resources in Systems

AFw 172-1 USAF Budget Manual

AFCMDP 800-2 Acquisition Management - Contract
Management Guide

AFCMDR 70-16 Supporting Contract Administration

AFCMDR 70-24 Subcontract Management Program

AFCMDR 74-1 Procurement Quality Assurance Program

AFCMDR 84-1 Production Manufacturing Operations

AFCMDR 178-I Contractor Management System Evaluation
Program

AFCMDR 800-1 Acquisition Management - Contract
Management Engineering

AFCMDR 800-3 Embedded Computer Resources

AFCMDR 800-11 AFCMD Memorandum of Agreement Managemen.-
System

AFSC Sup 1 (AFR 300-10) Computer Programming Languages

AFLCR 800-21 Management and Support Procedures for

Computer Resources Used in Defense Systems

AFLCP/
AFSCP 800-34 Acquisition Logistics Management

9-

96-.

.....................................

............................

.- ~--~--~-°-.-.-°°°,
-°= °°F--

" 1I7

Appendix B: Glossary of Techniques and Tools

This appendix defines the techniques and tools employed

in a quality assurance program. The following glossary is

neither all inclusive nor totally complete (43:212-225).
Io

Technique Glossary

1. ALGORITHM EVALUATION TEST: A technique used to evaluate
critical algorithm trade-offs (i.e., speed versus size
versus precision) before the design is finalized. Often S
called "the hardest out first method", the technique
creates a detailed design based upon trial coding
results for key algorithms. The algorithms are often
extensively exercised in a simulated environment to
ensure mission requirements are satisfied.

2. ANALYTICAL MODELING: A technique used to express math-
ematically (usually by a set of equations) a represen-
tation of some real problem. Such models are valuable
for abstracting the essence of the subject of inquiry.
Because equations describing complex systems tend to be
complicated and often impossible to formulate, it is
often necessary to make simplifying assumptions, which
may tend to distort accuracy. -*

3. AUDITING: A formal technique employed to examine and
verify through inspection either the status of a program
and its documentation or the adherence of project per-
sonnel to established procedures. Scheduled audits are
normally contractually imposed and pericdically held.
Unscheduled audits are utilized at random intervals to
assess compliance with quality requirements.

4. CODE INSPECTION: A disciplined technique used for
inspecting the code and identifying errors. Partici-
pants have well-defined roles and criteria for eval-
uating the code. If errors are identified, the code
is reworked. Follow-up procedures are used to ensure
that the errors have been corrected.

5. CORRECTNESS PROOFS: A technique used to prove the
correctness of programs using means similar to those
employed to prove mathematical theorems. Axioms and
theorems derived are used to establish the validity of
the program with respect to a precise specification of
its purpose.

97

............................

6. DESIGN INSPECTION: A disciplined technique used for
inspecting the design and identifying errors. Partici-
pants have well-defined roles and criteria for eval-
uating the design. If errors are identified, the design
is reworked. Follow-up procedures are used to ensure
the errors have been corrected.

7. ERROR-PRONE ANALYSIS: A technique employed during
coding to identify areas of the program that have
required abnormally frequent correction and change.
These areas can either be reworked or subjected to an
extensive test effort.

8. EQUIVALENCE CLASSES: A technique used to automatically
identify a complete set of test cases for a program.
The set is interpreted in terms of inequalities involv-
ing program variables that define a set of conditions
necessary for the particular program flow to actually
occur.

9. EXECUTION ANALYSIS: A technique employed during test
to investigate program behavior errors and to identify
areas in the code that were either untested or not fully
tested. The program is executed and statistics are
collected. Test results and the statistics are then
analyzed to insure that each interface, functional and
test requirement has been correctly mechanized by the
code.

10. FUNCTIONAL TESTING: A technique used to demonstrate
that the software performs it specifications satisfac-
torily under normal operating conditions, computing
nominally correct output values from nominal input
values.

11. LOGICAL TESTING: A technique used to confirm that the
code performs its computation correctly. Items vali-
dated by logical testing include arithmetic (i.e., pre-
cision, accuracy, etc.), error handling, initialization,
interfaces, and timing.

12. PATH TESTING: A technique used to confirm that certain
test-effectiveness measures based on the program's
control topology have been realized. The technique
assures that a sufficient number of statements, branch
paths, and subroutine calls have been exercised during
program execution. It also helps identify a complete
set of test cases for the program.

13. POST-FUNCTIONAL ANALYSIS: A technique employed after
completion of functional testing to identify function-
ally weak areas in the program. The recorded test

98

results are analyzed and the quality of the final
product is determined.

14. REVIEWING: A technique employed to examine and verify p
through inspection either the status of a program and
its documentation or adhe..cnce of project personnel to
established procedures. Scheduled reviews are normally
contractually imposed and periodically held. Informal
reviews are held frequently to assess in detail the
technical adequacy of the software product. P

15. SIMULATION: Simulation is the process of studying
specific system characteristics by use of models exer-
cised over a period of time and a variety of conditions
for the purpose of evaluating alternatives, timing, -
system capacities, performance, and constraints within P .
the confines of that system. Simulation can be used by
quality assurance throughout the life cycle. It can
assist in evaluating conceptual trade-offs. It can
also be used to model the environment and provide real-
istic test inputs to a program being examined.

P.

16. STANDARDIZATION: A technique used to create an author-
itative model against which products and/or procedures ..
can be compared in order to determine their quality.
Software items for which standards can be easily estab-
lished include documentation, languages, designs, and
structured programming. t

17. STATIC ANALYSIS: A technique employed during test to
identify weaknesses in the source code. The syntax of
a program is examined and statistics about it are gen-
erated. Items such as relationships between module,
program structure, error-prone constructions, and
symbol/subroutine cross-references are checked and
violations of established rules are anlyzed.

18. STRESS TESTING: A technique employed to confirm that
the code performs its specifications satisfactorily
under extreme operating conditions, computing nominally
correct output values from worst case input values
(i.e., singularities, end points for the range of data,
etc.)

19. SYMBOLIC EXECUTION: A technique that employs symbolic
data to confirm that the software performs properly.
Symbolic execution allows one to choose intermediate
points in the test spectrum ranging from individual
test runs to correctness proofs. Its results can be
used to develop a minimum set of test cases.

99

' " Z --'.' - =' , ,.: / '... " "
°'

'. .' 'i' '-.. .. ,' . -.,"~ . , " -'- . ", *a '.'*. ," " " " °.

20. WALK-THROUGHS: A technique used for reviewing the
design or code and identifying errors. The responsible
programmer discusses his product with his peers and
solicits their constructive advice. Product modifica-
tions are then made at the discretion of the programmer
to correct problems identified during review.

Tool Glossary

1. ACCURACY STUDY PROCESSOR: A computer program used to
perform calculations or assist in determining if program
variables are computed with required accuracy. The
processor accepts mathematical equations and data as
inputs. It then uses the data as variables in the
equations and solves them.

2. AUTOMATED TEST GENERATOR: A computer program that
accepts inputs specifying a test scenario in some
special language, generates the exact computer inputs,
and determines the expected results.

3. COMPARATOR: A computer program used to compare two
versions of the same computer program under test to
establish identical configuration or to specifically
identify changes in the source coding between the two
versions.

4. CONSISTENCY CHECKER: A computer program used to deter-
mine 1) if requirements and/or designs specified for
computer programs are consistent with each other and
their data base and 2) if they are complete.

5. CROSS-REFERENCE: A group of computer programs that
provide cross-reference information on system compo-
nents. For example, programs can be cross-referenced
with other programs, macros, parameter names, etc.
This capability is useful in problem-solving and test-
ing to assess impact of changes to one area or another.
This capability should be provided in most compiler
environments.

6. DATA BASE ANALYZER: A computer program that reports
information on every usage of data, identifies each
program using any data elements, and indicates whether
the program inputs, uses, modifies, or outputs the data
element. Any unused data is printed. Errors dealing
with misuse and nonuse of data and conflicts in data
usage are identified during the analysis.

7. DEGUGGER: Compile and execution-time checkout and
degug capabilities that help identify and isolate

100

program errors. They usually include commands or
directives such as DUMP, TRACE, MODIFY CONTENTS, BREAK-
POINT, etc. Some debuggers operate at the source level
and others at the object level with some additional
source information.

8. DECISION TABLES: A mechanism used to represent infor-
mation on program conditions, rules, and actions in
tabular form that can be automatically translated to
executable code by a processor. Decision tables are a
tabular representation of the design which can be used
to clarify the control flow of decision alternatives
by presenting the information in a concise and under-
standable format.

9. DYNAMIC ANALYZER: A computer program that instruments
the source code by adding counters and other statistics
gathering sensors and produces reports on how thoroughly
the various portions of the code have been exercised
after the augmented code is executed. Dynamic analyzers
provide information useful for tuning, optimization, and
test case design.

10. DYNAMIC SIMULATOR: A computer program used to check out
a program in a simulated environment comparable to that
in which it will reside. Closed-loop effects between
computer and environmental models are gained when the
various models respond to inputs and outputs. The sim-
ulator allows the environment to be stabilized at a
specific configuration for any number of runs required
to observe, diagnose, and resolve problems in the oper-
ational program.

11. EDITOR: A computer program used to analyze source pro- -

grams for coding errors and to extract information that
can be used for checking relationships between sections
of code. The editor can scan source code and detect
violations to specific programming practices and stand-
ards, construct an extensive cross-reference list of
all labels, variables and constants, and check for pre-
scribed program formats.

12. FLOWCHARTER: A computer program used to show in detail
the logical structure of a computer program. The flow
is determined from the actual operations as specified by
the executable instructions, not from comments. The
flowcharts generated can be compared to flowcharts pro-
vided in the computer program design specification to
show discrepancies and illuminate differences.

13. HARDWARE MONITOR: A unit that obtains signals from a
host computer through probes attached directly to the

101

*-2- ".--.. -.- -.'..-.-.-..-....'. .. "..-...- ,.- -... -- --- - - . -.....---- '- ..

computer's circuitry. The signals obtained are fed to
counters and timers and are recorded. These data are
then reduced to provide information about system and/or
program performance (CPU activity, channel utilization,
etc.).

14. INSTRUCTION TRACE: A computer program used to record
every instance a certain class of operations occurs and
triggers event-driven data collection. In some cases,
this creates a complete timed record of events occurring
during program execution.

15. INTERFACE CHECKER: A computer program used to automat-
ically check the range and limits of variables as well
as the scaling of the source program to assure compli-
ance with interface control documents.

16. INTERRUPT ANALYZER: A computer program that determines
potential conflicts to a system as a result of the
occurrence of an interrupt.

17. LANGUAGE PROCESSORS: Computer programs used to trans-
late high-level or symbolic instruction mnemonics into
computer-oriented code capable of being executed by a
computer. Compilers, assemblers and meta-assemblers
are example tools used for program development. Pre-
processors have been developed to support implementa-
tion of modejn programming techniques.

18. LIBRARIES: A collection of organized information used
for reference or study. Many varieties of library
systems can be implemented. Some manage the storage
and distribution of the computer program in both source
and object form. Others manage the computer program,

its documentation and related test data.

19. LOGIC ANALYZER: A computer program use to automati-
cally reconstruct equations forming the basis of a
program and to flowchart assembly language programs.

20. MANAGEMENT INFORMATION SYSTEM: Consists of a computer
based information system (a particular combination of
human service, material service, and equipment service)
for the purpose of gathering, organizing, communicating,
and presenting information to be used by individuals for
planning and controlling an enterprise.

21. REQUIREMENTS TRACER: A computer program used to provide
traceability from requirements through design and imple-
mentation of the software products. Traceability is
characterized to the extent that an audit trail exists
for the successive implementation of each requirement.

102

22. SIMULATOR: A computer program that provides the target
system with inputs or responses that resemble those that
would have been provided by the process for the device
being simulated. The simulator's function is to present
data to the system at the correct time and in an accept-
able format.

23. SOFTWARE MONITOR: A computer program that provides
detailed statistics about system performance. Because
software monitors reside in memory, they have access to 0
all the tables the system maintains. Therefore, they
can examine such things as core usage, queue lengths,
and individual program operation to help measure
performance.

24. STANDARDS: Procedures, rules, and conventions used for .
prescribing disciplined program development. Architec-
ture and partitioning rules, documentation conventions,
language conventions, configuration, and data manage-
ment procedures, etc., are typical examples under this
category. p

25. STANDARDS ANALYZER: A computer program used to auto-
matically determine whether prescribed programming
standards and practices have been followed. The pro-
gram can check for violations to standards set for such
conventions as program size, commentary, structure, etc.

26. STATIC ANALYZER: A computer program used to provide
information about the features of a source program.
This type of tool examines the source code statically
(not under execution conditions) and performs syntax
analysis, structure checks, module interface checks,
event sequence analysis and other similar functions.

27. STRUCTURE ANALYZER: A computer program used to examine
source code and determine that structuring rules set
for either the control or data structure, or both, have
been obeyed.

28. TEST BED: A test site composed of actual hardware
(hardware test site) or simulated equipment (software
test site) or some combination. A hardware test site
uses the actual computer and interface hardware to check
out the hardware/software interfaces and actual input/
output. The program execution is confirmed using actual
hardware timing characteristics, but the output is
limited and test repeatability is a problem. A software
test site uses an instruction level and/or statement
level simulator to model actual hardware. A software
test site permits full control of inputs and computer

103
- . S.

characteristics, allows processing of intermediate out-
puts without destroying simulated time, and allows full
test repeatability and good diagnostics...

29. TEST DRIVERS, SCRIPTS: To run tests in a controlled
manner, it is often necessary to work within the frame- -"

work of a "scenario" -- a description of a dynamic sit-
uation. To accomplish this, the input data files for
the system must be loaded with data values representing .
the test situation or events to yield recorded data to 9
evaluate against expected results. These tools permit
generation of data in external form to be entered into
the system at the proper time.

30. TEST-RESULT PROCESSOR: A computer program used to ..
perform test output data reduction, formatting, and S
printing. Some perform statistical analysis where the
original data may be the output of a monitor.

31. TEXT EDITOR: A computer program used to prepare docu-
mentation and perform work-file edits (erase, insert, --

change, and move words or groups of words). The pro-
gram requires a facility for on-line storage and recall
of text units for inspection, editing, or printing.

32. TIMING ANALYZER: A computer program that monitors and
prints execution time for all program elements (func-
tions, routines, and subroutines).

A_

- .

::::- :

-.:.t

104..=

.'...;

Appendix C: Sample Letter and Interview Guide

DEPARTMENT OF THE AIR FORCE
Am Panel INSTiITUI OF TICMNO.OGY (AUl

1111OMNY-PAYTrSON1110 AIR Pane SASS. 001f

411,L T LS (Mr. Michael D. @at*%, 235-4643)

a~~c Software Quality Assurance

1. A master's degree candidate (Captain Steven P. Lamb) in
- the Systems Management Program at the Air Force Institute of

Technology (AFIT) is conducting research under the guidance
*4 the ^FIT graduate faculty (Mr. Michael D. Sates). Captain --

Lamb has defined a research objective which will determine.
approaches to improving the quality of computer software
before turnover to the Air Force. Based on this objective,
he will be able to provide recommnendations on the content of.7
an effective quality assurance program.

2. To achieve the objective, Captain Lamb needs to interview
people who Know your organization's software quality assur-
ance program. Mar we have your permission for Captain Lamb
to interview the People You designate? In addition, would
you send Captain Lamb any printed information, such as organ-
izational charts, that support the interview guide Captain0
Lamb plans to use. Our contact point for this effort is
Mr. Bates, AFIT/LSY, Wright-Patterson AFS, Ohio, 43433.

3. 1 would appreciate your cooperation in helping Captain
Lamb complete this research project. Of course, we will
amalgamate the responses so that mno are attributable to an
individual. Thankc you for your help.

LR SMITH, Colonel, USAF I Atch
D 9nJ Interview Guide 'N
Sch' 9 of Systems and Logistics

AlI -OCt-A GIZ' A O.F

105

.*.%%~%*%~%~%-. ~ .v .*....-.s. ~ .. ~..)...*..

Interview Guide

Backqround

1. Name.

2. Position.

3. How many years have you worked here?

4. In what field is your formal training?

Quality Assurance Planning

5. What planning exercises, documents and such are used to
assure quality software prior to the start of a project?

6. What problems are encountered during the quality assur-

ance planning process?

7. Who are the key people involved in this planning process?

8. Is user involvement in the software development process
encouraged? If so, how?

Staffing and Organization

9. Where does the quality assurance goup fit in the organ-
ization?

10. What type of authority does the quality assurance group
have over the software product?

11. What education and training do the personnel in the
quality assurance group have?

12. What functions are performed and/or controlled by the
quality assurance group?

13. How many people are permanently assigned to the quality
assurance group?

Reviews and Audits

14. Is a schedule developed for conducting software reviews
and audits during the development life cycle?

106

S. . . h . • . -° -D A° % . . -.-

15. If so, when is this schedule developed and where is it

documented?

16. Who performs the reviews and audits?

17. How are the results of the software reviews and audits
documented and published?

Software Testing

18. Who performs the software testing throughout the devel-
opment life cycle?

19. What is the organizational relationship between the
quality assurance group and the testing group?

20. Who certifies that the test results are the actual
findings of the tests?

21. What documents are used to control software testing?

Library Control

22. What safeguards assure no unauthorized changes are made
to the developmental software?

23. What would be considered "controlled materials"? ,,*.'

Software Documentation

24. What standards are followed when preparing software
documentation?

25. Is a Unit Development Folder (UDF) approach used to keep
track of documentation for each software unit or module?

Quality Assurance Techniques and Tools

26. Techniques consist of procedures arranged to simplify
the evaluation process (e.g., walk-throughs, audits,
etc.). Are quality assurance techniques used?

27. Tools are automated aids used in evaluation (e.g., edi-
tors, simulators, etc.). Are quality assurance tools
used?

28. Where are quality assurance techniques and tools iden-
tified?

107

1.4%9 Z%"

29. Are quality assurance techniques and tools verified as
to their usefulness prior to implementing?

Ie
Training

30. What type of training do new quality assurance personnel
receive?

31. If a new software product is designed, how is the user
trained?

Follow-up Considerations

32. Who handles problems with software after release?

33. What methods of feedback are used to obtain information
from the user after release?

Conclusion

34. Is there anything you would like to add?

15. Are there any questions I can answer for you?

VV

I..'..,,

a-.'

2'a,

a' t

Bibliography

I
1. Alberts, David S. "The Economics of Software Quality

Assurance," Tutorial: Software Testing and Validation
Techniques. 348-357. IEEE, Inc., New York, 1978.

2. Anthony, Robert N. and David W. Young. Management Con-
trol in Non-Profit Organizations. Homewood IL: Richard S
D. Irwin, Inc., 1984.

3. Aeronautical Systems Division. Software Development
Capability/Capacity Review. Instructional manual.
ASO/EN, Wright-Patterson AFB OH, May 1984. S

4. Babel, Philip S. Joint Service Acquisition Management
Initiatives. Report. ASD/EN, Wright-Patterson AFB OH,
May 1984.

5. Baker, Emanuel R. and Matthew J. Fisher. "A Software
Quality Framework," Concepts, 5: 95-107 (Autumn 1982).

6. Bates, Michael D. Lecture materials distributed by the
Department of System Acquisition Management. School of
Systems and Logistics, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, February 1984.

7. Blanchard, Benjamin S. Engineering Organization and
Management. Englewood Cliffs NJ: Prentice-Hall, Inc.,
1976.

8. Boebert, W. Earl. "Software Quality Through Software
Management," Software Quality Management, edited by
John D. Cooper and Matthew J. Fisher. New York:
Petrocelli Books, Inc., 1979.

9. Boehm, Barry W. Software Engineering Economics.
Englewood Cliffs NJ: Prentice-Hall, Inc., 1981.

10. - ------. "Quantitative Evaluation of Software Quality,"
Tutorial: Models and Metrics for Software Management
Enqineering. 218-231. IEEE, Inc., New York, 1980.

11. Boeing Aerospace Company. Software Acquisition Engi-
neering Guidebook: Software Quality Assurance. Report
No. ASD-TR-78-47. ASD/ENE, Wright-Patterson AFB OH,
January 1979 (AD-A082 425).

12. Buckley, Fletcher. "A Standard for Software Quality
Assurance Plans," Computer, 12: 43-49 (August 1979).

109

.

~~........ '. " ..

-~.--,--°°

13. Bunyard, Major General Jerry Max, USA and James Mike
Coward. "Today's Risks in Software Development -- Can
They Be Significantly Reduced?" Concepts, 1: 73-94
(Autumn 1982).

14. Burch, John G., Jr. and others. Information Systems:
Theory and Practice (Third Edition). New York: John-
Wiley and Sons, Inc., 1983.

15. Campanizzi, J. A. "Structured Software Testing," Qual-
ity Progress, 17: 14-15 (May 1984).

16. Department of Defense. Technic. Reviews and Audits
for Systems. Equipment, and Computer Programs.
MIL-STD-1521A. Washington: Government Printing Office,
21 December 1981.

17.------- Software Quality Assurance Program Requirements.
MIL-S-52779A. Washington: Government Printing Office,
1 August 1979.

18. ------- Quality Assurance Program. AFR 74-1.
Washington: Government Printing Office, 1 June 1979.

19. - ------. Configuration Practices for Systems, Equipment,
Munitions, and Computer Programs. MIL-STD-483.
Washington: Government Printing Office, 31 December 1970.

20. - ------. Quality Assurance Terms and Definitions.
MIL-STD-109B. Washington: Government Printing Office,
4 April 1969.

21 -------. Specifications Practices. MIL-STD-490.
Washington: Government Printing Office, 30 October 1968.

22. DeRoze, Barry C. and Thomas H. Nyman. "The Software
Life Cycle -- A Management and Technological Challenge
in the Department of Defense," IEEE Transactions on
Software Enqineering, 4: 309-318 (July 1978).

23. Dobbins, James A. "Software Quality Assurance," Con-
cepts, 5: 108-118 (Autumn 1982).

24. Drezner, S. M. and others. The Computer Resources Man-
agement Study. Report No. R-1855/l-PR. Rand, Santa
Monica CA, April 1976.

25. Dunn, Robert and Richard Ullman. Quality Assurance for
Computer Software. New York: McGraw-Hill, Inc., 1982.

26. Emory, C. William. Business Research Methods. Homewood
IL: Richard D. Irwin, Inc., 1980.

110
\A.. -.. '.... ._ ~ . - *. ± *A.* ~,' ..

27. Frank, Werner L. Critical Issues in Software. New York:
John Wiley and Sons, Inc., 1983.

28. Gansler, J. S. "Keynote: Software Management," Computer
Software Engineering, edited by Jerome Fox. Brooklyn NY:
Polytechnic Press, 1976.

29. Glass, Robert L. Software Reliability Guidebook.
Englewood Cliffs NJ: Prentice-Hall, Inc., 1979.

30. Grinath, Arthur C. and Phil H. Vess. "Making SQA Work:
The Development of a Software Quality System," Quality
Progress, 16: 18-23 (July 1983).

31. Grove, H. Mark. "DoD Policy for Acquisition of Embedded
Computer Resources," Concepts, 5: 9-36 (Autumn 1982).

32. Hannan, James. "QA Needed for Effective Software,"
Government Computer News, 3: 29+ (April 1984).

33. Ingrassia, Frank S. "The Unit Development Folder (UDF):
An Effective Management Tool for Software Development,"
Tutorial: Software Management. 249-262. IEEE, Inc.,
New York, 1979.

34. Institute of Electrical and Electronics Engineers.
Standard Glossary of Software Engineering Terminology.
IEEE Std 729. IEEE, Inc., New York, 1983.

35. Knight, Garney M. "Organizational Planning for Software
Quality," Software Quality Management, edited by John D.
Cooper and Matthew J. Fisher. New York: Petrocelli
Books, Inc., 1979.

36. Klucas, Lieutenant Colonel Casper H., USAF and others.
"Joint Service Software Policy and Standards," Concepts,
5: 191-201 (Autumn 1982).

37. Lewis, Robert 0. "Software Verification and Validation
(V&V)," Software Quality Management, edited by John D.
Cooper and Matthew J. Fisher. New York: Petrocelli
Books, Inc., 1979.

38. Lloyd, David K. and Myron Lipow. Reliability: Manage-
ment. Methods and Mathematics (Second Edition). Redondo
Beach CA: Published by the Authors, 1977.

39. Marciniak, Colonel John J., USAF. "A Perspective on
Military Software Standardization Efforts," Second
Software Engineering Standards Applications Workshop.
19-23. IEEE, Inc., New York, 1983.

• ~111 ":

*,..

.,-

40. McCall, James A. "An Introduction to Software Quality
Metrics," Software Quality Management, edited by John
0. Cooper and Matthew J. Fisher. New York: Petrocelli
Books, Inc., 1979.

41. Poston, Robert M. "Software Quality Assurance Imple-
mentation," The IEEE Computer Society's Sixth Interna-
tional Computer Software and Applications Conference.
356-357. IEEE, Inc., New York, 1982.

42. Product Quality in the Operational Environment. Research
report. HQ AFSC, Wright-Patterson AFB OH, November 1979.

43. Reifer, Donald J. "Software Quality Assurance Tools and
Techniques," Software Quality Management, edited by John
D. Cooper and Matthew J. Fisher. New York: Petrocelli
Books, Inc., 1979.

*44.- ------ -A Glossary of Software Tools and Techniques,"
Computer, 10: 52-59 (July 1977).

45. Rubey, Raymond J. "The Effect of Standardization on
Avionics Software Quality Assurance," IEEE National
Aerospace and Electronics Conference. 656-662. IEEE,
Inc., New York, 1979.

46. "Planning for Software Reliability," Proceedings:
Annual Reliability and Maintainability Symposium.
495-499. IEEE, Inc., New York, 1977.

47. Srinivasan, C. A. and Paul E. Dascher. "Quality Assur-
ance Program: A Method to Improve Software Management,"
Hospital Financial Management, 35: 24-26+ (June 1981).

48. Stamm, Stephen L. "Assuring Quality Quality Assurance,"
Datamation, 27: 195-198+ (March 1981).

49. Systems Architects, Inc. Improving Software Quality
Assurance Methods. Report No. RADC-TR-82-106. Rome
Air Development Center, Griffiss AFB NY, April 1982
(AD-A116 980).

50. System Development Corporation. Software Acquisition
Management Guidebook: Software Quality Assurance.
Report No. ESD-TR-77-255. Electronic Systems Division,
Hanscom AFB MA, August 1977 (AD-AO47 318).

51. TRW Defense and Space Systems Group. Airborne Systems
Software Acquisition Engineering Guidebook for Quality
Assurance. Report No. ASD-TR-78-8. ASD/ENAI,
Wright-Patterson AFB OH, November 1977 (AD-A059 068).

112

1',.

o...

52. TRW Systems Group. Software Development and Configura-
tion Management Manual. TRW Software Series No.
TR--SS-73-07. December 1973.

53. Walters, Gene F. "Application of Metrics to a Software
Quality Management (AM) Program," Software Quality Man-
agement, edited by John D. Cooper and Matthew 3. Fisher.
New York: Petrocelli Books, Inc., 1979. "-i.-

54. Webster's New Collegiate Dictionary. Springfield MA: ,
G. and C. Mezrriam Co., 1979.

55. White, Benjamin B. "Planning for Software Quality,"
IEEE National Aerospace and Electronics Conference.
230-235. IEEE, Inc., New York, 1978.

56. Yeh, Raymond T. Current Trends in Programming Method-
ology. Englewood Cliffs NJ: Prentice-Hall, Inc., 1977.

113-.

113." "

* -. 7 -. 7* 7 7.

VITA

Captain Steven P. Lamb was born on 26 August 1952 in

Amarillo, Texas. He graduated from high school in Widefield,

Colorado, in 1970 and attended Southern Colorado State College

from which he received the degree of Bachelor of Science in

Education in March 1975. In September 1979, he was commis-

sioned in the Air Force through the Officer Training School

program at Lackland Air Force Base, Texas. Following training,

he completed the Computer Systems Development Officer Course

at Keesler Air Force Base, Mississippi, in January 1980. He

was then assigned as Chief, Communications System Segment

Configuration Management Office, Headquarters North American

Aerospace Defense Command, Cheyenne Mountain Complex, Colorado,

until entering the School of Systems and Logistics, Air Force

Institute of Technology, in June 1983.

Permanent address:

4825 Astrozon Blvd., Lot 191
Colorado Springs, Colorado 80916

114

.. - . .

- a.- -

UNCLASSIFIFD
* SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
A&REOT SECURITY CLASSIFICATION ft. RESTRICTIVE MARKINGS

UNCLASSIFIED _____________________

2S6 SECURIITY CLASSIFICATION AUTHORITY 3. OISTRIBUTION/AVAILABILITY OF REPORT -

_______________________________ Approved for public release;
2bELSIFICATIO4IOOWNGRIAOING SCHEDULE distribution unlimited

4PERFORMING ORGANIZATION REPORT NUNSER(S) S. MONITORING ORGANIZATION REPORT NUM6ERIS)

AFIT/GSM/LSY/84S-19

B.NAME OF PERFORMING ORGANIZATION4 OFFICE SYMBOL 7&. NAME Of MONITORING ORGANIZATION

School of Systems (IroaDUiubd)
* and Logistics AFIT/LS _____________________

S&Ba ADDRESS (CUly. 5tats old ZIP Co*d 7b. ADDRESS (City. Stam and ZIP Coo)i

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

SI. ftAME OF PUNOINGISP04SORING ji.OPFICE SYMBOL 9. PROCURE[MENT INSTRUMENT IGENTIFICATION NUMBRA
ORGANIZATION1(I pUWe

Uft ADDRESS (city. stat and ZIP Code) 10. SOURCE oF FUNDING NOS. ___________

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. No. NO. NO.

11. TITLE (Include SwICUty C~li~eutio.)
See Box 19

1 12. PERSONAL AU1tHORtS)
Steven P. Lamb, B.S., Captain, USAF

13AL TYPE OF REPORT 13b, TIME COVERED 1.ATOFREPORT (yr., Ao.. Day) '1S. PAGE COUNT

MSThesis PRM____T ___ 1984_Se tember 125
1.SUPPLEMENTARY NOTATION 11110UM OFwUy

D O-a M LhMa~had Pledu.lemg 0 111-
A ---- .

17. COSATI CO00S IS. SUBJECT TE RMS (Co. nae Olt iwwssin Somhnber)-
F16L. GROUP 114.111 R. Quality Assurance, QultyCnrol,.

09 1 Software Quality, Software Reliability,
I Software Management

IS. ABSTRACT ICombusei on revem if nwcery7 4nd Identify by block number)

Title: A SURVEY AND EVALUATION OF
SOFTWARE QUALITY ASSURANCE

Thesis Advisor: Ronald H. Rasch, Major, USAF

206 DISTRIBOUTION/AVAI LAOSILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEO/UNLIMITED0 SAME AS RPT. C3 OTIC USERS 03 UNCLASSIFIED

221L NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

Ronald H. Rasch, Major, USAF 513255402

00 FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UCASFE
SECURITY CLASSIFICATION OF THIS PAGE

It is crucial to the success of mission critical
computer resources (MCCR) that software be delivered
for operational use with the minimum number of errors
possible. For this reason, the discipline of software
quality assurance is needed. This research focuses on
data collection by means of an extensive literature
review and personal interviews with civiliart and Air
Force software development organizations. Then anal-
ysis was performed to determine what approaches would
improve the quality of software before delivery to the
Air Force for operational use.

To provide the highest level of software quality,
the entire development process must include quality
checks at each step from design through acceptance
test. An active software quality assurance program
that identifies and corrects errors during the devel-
opment process is necessary. This effort will lead
to significant defects being identified and resolved
early. If the quality of software is to improve,
greater emphasis must be placed on software quality
assurance as a separate discipline. Quality software
cannot be attained by following hardware oriented
plans and procedures. Therefore, software conformance
standards must be provided. Technology is constantly
changing and advancing, and provision must be made to
update personnel in the state-of-the-art quality
assurance practices. Continual training is essential,
both for those personnel who have quality assurance
background and those who do not. The arguments for
software quality assurance are critical. In short,
they are to combat error and improve software quality
to meet mission needs.

43

4 ,J

'4

Ic

e i. 41i~ ~~.j

II

4K2

